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Modelado de Expansión Urbana en Cartagena 

mediante Autómatas Celulares y Redes 

Neuronales Artificiales 

Alberto Agualimpia Reales 

José Daniel González Agudelo 

Kevin Alexander Yonoff Jácome 

Resumen 

La expansión urbana acelerada en ciudades costeras como Cartagena de Indias genera 
presiones sobre ecosistemas estratégicos y desafíos para la planificación territorial 
sostenible. Este estudio desarrolló dos modelos predictivos de cambio de cobertura del 
suelo integrando Autómatas Celulares (AC) y Redes Neuronales Artificiales (RNA) mediante 
la herramienta MOLUSCE de QGIS. El Modelo 1, calibrado con coberturas de 2017 y 2021, 
proyectó la expansión urbana a 2025 alcanzando un índice Kappa de 0.9219 y precisión 
del 97.46% al validarse con datos reales de 2024. El Modelo 2, basado en coberturas de 
2017 y 2024, generó proyecciones hacia 2031 con Kappa de 0.8803. Las variables 
explicativas incluyeron densidad poblacional, pendiente, distancia a vías principales, zonas 
de expansión urbana y áreas de conservación ambiental. Durante 2017-2024, la superficie 
urbanizada creció +11.39 km² (+12.7%), mientras el manglar y la cobertura arbórea 
disminuyeron -3.51 km² (-10.1%) y -5.70 km² (-4.1%) respectivamente. Se identificó 
conversión dominante de Cultivos a Urbanizado (65.9%) y cambio de régimen: urbanización 
acelerada 2017-2021 (+2.39 km²/año) versus desaceleración 2021-2024 (+0.61 km²/año). 
La proyección a 2031 mostró crecimiento mínimo (+0.37 km²) condicionado por 
restricciones normativas en áreas protegidas. Los modelos CA-ANN demostraron robustez 
para capturar dinámicas territoriales complejas, aportando insumos técnicos que fortalecen 
la planificación urbana sostenible donde convergen presiones de desarrollo y conservación 
ecosistémica.  

Palabras clave: Expansión urbana; Red neuronal artificial; Autómatas celulares; Sistemas 
de Información Geográfica; Ciudad de Cartagena. 
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Modeling Urban Expansion in Cartagena 

using Cellular Automata and Artificial Neural 

Networks 

Alberto Agualimpia Reales 

José Daniel González Agudelo 

Kevin Alexander Yonoff Jácome 

Abstract 

Accelerated urban expansion in coastal cities such as Cartagena de Indias generates 

pressure on strategic ecosystems and challenges sustainable territorial planning. This study 

developed two predictive land cover change models integrating Cellular Automata (CA) and 

Artificial Neural Networks (ANN) using QGIS MOLUSCE tool. Model 1, calibrated with 2017 

and 2021 coverages, projected urban expansion to 2025 achieving a Kappa index of 0.9219 

and 97.46% accuracy when validated with actual 2024 data. Model 2, based on 2017 and 

2024 coverages, generated projections to 2031 with Kappa of 0.8803. Explanatory variables 

included population density, slope, distance to main roads, urban expansion zones, and 

environmental conservation areas. During 2017-2024, urbanized area grew +11.39 km² 

(+12.7%), while mangrove and tree cover decreased -3.51 km² (-10.1%) and -5.70 km² (-

4.1%) respectively. Dominant conversion from Cropland to Urban (65.9%) and regime 

change were identified: accelerated urbanization 2017-2021 (+2.39 km²/year) versus 

deceleration 2021-2024 (+0.61 km²/year). Projection to 2031 showed minimal growth (+0.37 

km²) conditioned by regulatory restrictions on protected areas. CA-ANN models 

demonstrated robustness for capturing complex territorial dynamics, providing technical 

inputs that strengthen sustainable urban planning where development pressures and 

ecosystem conservation converge. 

Keywords: Urban expansion; Artificial neural network; Cellular automata; Geographic 

Information Systems; City of Cartagena. 
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1. INTRODUCCIÓN  

La expansión urbana constituye uno de los fenómenos territoriales más relevantes del siglo 
XXI. De acuerdo con Principi (2022), para el año 2030 cerca del 60 % de la población 
mundial residirá en áreas urbanas, concentrándose la mayor parte de este crecimiento en 
países en desarrollo. Este proceso genera profundas transformaciones espaciales que, sin 
una adecuada planificación, pueden derivar en fragmentación de ecosistemas, sobrecarga 
de infraestructuras y deterioro de la calidad de vida urbana (Aguilera Benavente, 2006).  

En el contexto latinoamericano, Colombia presenta un alto nivel de urbanización, con 
aproximadamente el 75 % de su población viviendo en cabeceras municipales hacia 2018, 
según la “National Urban Policy Review of Colombia” de la Organización para la 
Cooperación y el Desarrollo Económicos (OECD, 2022). Este valor refleja una 
transformación estructural del territorio: mientras en 1950 menos del 40 % de la población 
residía en áreas urbanas, en la actualidad el país supera el promedio regional y consolida 
un patrón de urbanización sostenido, tendencia que representa una inversión completa del 
esquema histórico, en el que predominaban los asentamientos rurales (Padilla et al., 2015). 
El fenómeno se intensifica particularmente en ciudades intermedias y áreas metropolitanas, 
donde Salazar Tamayo & Julio Estrada (2022) documentan que la mayoría de las ciudades 
colombianas duplicaron su extensión urbana en los últimos 10 años, resultando en alta 
demanda de suelo y capacidades limitadas de autoridades locales para gestión territorial 
sostenible.  

Cartagena de Indias, situada en la región Caribe de Colombia, constituye un caso 
representativo de los desafíos territoriales que enfrentan las ciudades costeras del país. Su 
localización estratégica, el crecimiento poblacional y la expansión de la infraestructura 
urbana han incrementado la presión sobre ecosistemas sensibles como manglares, cuerpos 
de agua y zonas de recarga hídrica (Salazar Tamayo & Julio Estrada, 2022). Diversos 
estudios advierten que la interacción entre procesos de urbanización, cambio climático y 
transformaciones geomorfológicas ha configurado escenarios de vulnerabilidad ambiental 
que demandan enfoques integrados de planificación y gestión del territorio (Alshari & 
Gawali, 2022; Nguyen et al., 2021; Padilla et al., 2015; Thammaboribal & Tripathi, 2024). 
Ante este contexto, se requiere fortalecer las herramientas de análisis espacial que 
permitan anticipar posibles trayectorias de expansión y evaluar su compatibilidad con la 
sostenibilidad ambiental y la resiliencia urbana. En este marco, la modelación de cambio de 
uso del suelo surge como un instrumento técnico-científico clave para orientar la toma de 
decisiones y apoyar la formulación de estrategias de ordenamiento que equilibren las 
necesidades de desarrollo con la conservación de los ecosistemas costeros (Principi, 2022). 

El modelado de expansión urbana mediante autómatas celulares (AC) integrados con redes 
neuronales artificiales (RNA) se ha consolidado como una metodología robusta para la 
simulación de dinámicas territoriales complejas (kamaraj & Rangarajan, 2021). Los AC 
permiten representar sistemas dinámicos en los que cada celda del espacio evoluciona de 
acuerdo con reglas de transición dependientes del estado de sus vecinas, reproduciendo 
patrones espaciales característicos del crecimiento urbano (Asia Air Survey & Next GIS, 
2014; Fontana et al., 2023). Las RNA, por su parte, posibilitan identificar relaciones no 
lineales entre variables explicativas, como la pendiente del terreno, la distancia a vías 
principales o la densidad de población, fortaleciendo la capacidad predictiva del modelo 
(Padilla et al., 2015). La herramienta MOLUSCE (Modules for Land Use Change 
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Evaluation), implementada como complemento en QGIS, integra ambos enfoques en un 
entorno automatizado que facilita el análisis y la proyección de escenarios de cambio de 
uso del suelo (Asia Air Survey & Next GIS, 2014; Fontana et al., 2023).  Estudios recientes 
han validado su efectividad en diversos contextos urbanos y ambientales, evidenciando una 
alta precisión en la predicción de la expansión urbana.  

El presente trabajo desarrolla un modelo predictivo de cambio de cobertura de suelo para 
Cartagena de Indias mediante la integración de autómatas celulares y redes neuronales 
artificiales implementadas en la herramienta MOLUSCE. El modelo se calibra inicialmente 
con información de cobertura de suelo correspondiente a los años 2017 y 2021, y se valida 
mediante la comparación entre las predicciones generadas para 2024 y los datos 
observados en 2024. Posteriormente, se formula un segundo modelo calibrado con las 
capas actualizadas de 2017 y 2024, con el propósito de proyectar escenarios alternativos 
de transformación territorial hacia el año 2031. Las variables explicativas empleadas 
incluyen la pendiente del terreno, la distancia a vías principales, la distancia a zonas de 
expansión urbana, la densidad poblacional y las áreas sujetas a restricciones ambientales. 
Los resultados obtenidos constituyen una base técnica para la interpretación de las 
dinámicas espaciales de la ciudad y proporcionan insumos útiles para fortalecer los 
procesos de planificación territorial y gestión del suelo urbano en contextos costeros. 

2. MARCO TEÓRICO Y METODOLÓGICO   

El análisis y predicción de las transformaciones en la cobertura del suelo constituye un 
desafío metodológico que ha impulsado el desarrollo de múltiples enfoques técnicos (Mas 
et al., 2014; Sarkar & Mondal, 2020). Las técnicas de teledetección permiten documentar 
los cambios territoriales mediante la clasificación de imágenes satelitales (Blissag et al., 
2024), mientras que los modelos estadísticos (como la regresión logística) facilitan la 
identificación de relaciones funcionales entre variables explicativas y probabilidades de 
cambio, no obstante, su carácter lineal limita la representación de la complejidad espacial 
(Asia Air Survey & Next GIS, 2014). En este contexto, la modelación basada en autómatas 
celulares (AC) y redes neuronales artificiales (RNA) ha surgido como una alternativa 
robusta, al combinar la representación de dinámicas locales con la capacidad de 
aprendizaje automático de patrones no lineales (Alshari & Gawali, 2022; Fontana et al., 
2023; Principi, 2022) 

Los autómatas celulares, desarrollados inicialmente por Von Neumann y Ulam en la década 
de 1940, constituyen sistemas dinámicos formados por celdas organizadas en una malla 
discreta, donde el estado de cada celda depende del de sus vecinas y de un conjunto de 
reglas de transición (Fontana et al., 2023; Principi, 2022). Entre los elementos básicos del 
modelo se incluyen la teselación espacial, el conjunto de estados posibles, la definición de 
vecindad, las reglas de evolución y el reloj de cómputo (Iskandar et al., 2024). La vecindad 
de Moore, una de las configuraciones más comunes, considera todas las celdas que rodean 
a la central, pudiendo ajustarse en distintos órdenes para definir el alcance de la influencia 
espacial (Padilla et al., 2015). 
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Figura 1:  Vecindad de Moore con diferentes proximidades  

 

Fuente: Tomado de Principi (2022). 

Los AC resultan especialmente apropiados para modelar la expansión urbana, ya que 
reproducen la naturaleza descentralizada del crecimiento de las ciudades mediante un 
enfoque de abajo hacia arriba. Su estructura espacial, dinámica y adaptable permite 
representar procesos de urbanización con gran eficiencia computacional y elevada 
capacidad de interpretación (Alshari & Gawali, 2022; Nguyen et al., 2021).  

Las redes neuronales artificiales, concebidas también a mediados del siglo XX, imitan el 
funcionamiento del sistema neuronal biológico para identificar patrones complejos en los 
datos (Fontana et al., 2023). El perceptrón multicapa es la arquitectura más utilizada en 
modelación espacial: recibe las variables de entrada, las procesa en capas ocultas 
mediante funciones de activación y genera una capa de salida que produce la predicción 
(Fontana et al., 2023; Principi, 2022). 
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Figura 2: Representación de un perceptrón multicapa  

 

Fuente: Tomado de Principi (2022). 

Durante el entrenamiento, los pesos de conexión se ajustan iterativamente mediante 
algoritmos de retropropagación que minimizan el error entre valores observados y predichos 
(Asia Air Survey & Next GIS, 2014). Este proceso permite a la red capturar relaciones no 
lineales entre factores biofísicos y socioeconómicos, fundamentales para estimar la 
probabilidad de cambio entre categorías de uso del suelo (Asia Air Survey & Next GIS, 
2014). 

La integración CA-ANN combina la capacidad de los AC para representar la dependencia 
espacial con la habilidad de las RNA para identificar relaciones complejas entre variables 
territoriales. Mientras las redes determinan la aptitud de transformación de cada celda, los 
autómatas simulan la propagación espacial del cambio (Alshari & Gawali, 2022; kamaraj & 
Rangarajan, 2021). Este enfoque supera las limitaciones de modelos puramente 
estadísticos o estocásticos al incorporar la estructura espacial local y el aprendizaje no 
lineal (Principi, 2022). El proceso de modelación CA–ANN comprende cinco fases: (1) 
preparación de datos y normalización de variables explicativas; (2) análisis de cambio 
mediante matrices de transición entre dos fechas base; (3) entrenamiento de la red neuronal 
para estimar las probabilidades de cambio; (4) simulación con autómatas celulares, 
aplicando las reglas de transición espaciales; y (5) validación estadística mediante índices 
Kappa que evalúan la concordancia global, espacial y cuantitativa entre mapas simulados 
y observados (Flores-Juca & Carrera, 2022; Fontana et al., 2023).  

La herramienta MOLUSCE (Modules for Land Use Change Evaluation) automatiza estas 
fases dentro de QGIS, integrando los métodos de redes neuronales, regresión logística, 
pesos de evidencia y evaluación multicriterio (Asia Air Survey & Next GIS, 2014). Su 
carácter de software libre, la facilidad de integración con datos geográficos y su validación 
en estudios internacionales respaldan su elección para el presente trabajo (Nguyen et al., 
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2021; Thammaboribal & Tripathi, 2024).  Los modelos CA–ANN han demostrado su 
versatilidad en contextos urbanos y ambientales diverso: Principi (2022) simuló la expansión 
de Luján, Argentina; Thammaboribal & Tripathi (2024) aplicaron el modelo en Pathumthani, 
Tailandia; y Alshari & Gawali (2022) en Saná, Yemen, alcanzando precisiones superiores al 
80 %. De igual forma, Nguyen et al. (2021) emplearon esta metodología para analizar 
riesgos de inundación asociados a cambios de cobertura en Vietnam. Esta diversidad de 
aplicaciones confirma la robustez del enfoque y su pertinencia para analizar los procesos 
de cambio de cobertura en Cartagena de Indias, una ciudad costera donde confluyen 
presiones de urbanización, conservación de ecosistemas y adaptación al cambio climático. 

3. HERRAMIENTA MOLUSCE EN QGIS   

La herramienta MOLUSCE, acrónimo de Modules for Land Use Change Evaluation, fue 
específicamente diseñada para analizar, evaluar, modelizar y simular cambios y escenarios 
futuros de uso del suelo, implementada como complemento en el Sistema de Información 
Geográfica de código abierto QGIS (Asia Air Survey & Next GIS, 2014).  Esta herramienta 
automatiza el flujo completo de trabajo del enfoque CA-ANN mediante una interfaz 
integrada que organiza el proceso de modelación en módulos secuenciales: preparación de 
datos de entrada, evaluación de correlaciones entre variables, análisis de cambios de área, 
modelación del potencial de transición, simulación mediante autómatas celulares y 
validación estadística (Asia Air Survey & Next GIS, 2014). Su carácter de software libre 
garantiza accesibilidad y replicabilidad metodológica, mientras que su integración nativa 
con QGIS permite la gestión eficiente de información geoespacial en formato ráster.  

MOLUSCE ofrece cuatro métodos de modelación del potencial de transición: redes 
neuronales artificiales (ANN), regresión logística (LR), pesos de evidencia (WoE) y 
evaluación multicriterio (MCE), siendo las tres primeras técnicas de aprendizaje automático 
que identifican patrones ocultos en las muestras de entrenamiento, mientras que MCE 
permite al usuario incorporar conocimiento experto sobre la importancia relativa de los 
factores territoriales (Asia Air Survey & Next GIS, 2014). El flujo de trabajo en MOLUSCE 
inicia con la normalización de las variables explicativas, procedimiento fundamental para 
lograr un entrenamiento eficiente de la red neuronal y resultados de predicción precisos. La 
estandarización se realiza mediante el cálculo del puntaje Z, expresado como la ecuacion 
1:  

                               Z =
(X − X̄)

σ
                             (1) 

donde Z representa la variable normalizada, X la variable considerada, X̄ la media y σ la 
desviación estándar (Principi, 2022). Este proceso transforma todas las variables a una 
escala comparable (típicamente entre 0 y 1), eliminando el efecto de diferencias en 
unidades de medida, rangos de variación y dispersión entre factores, permitiendo que el 
modelo pondere adecuadamente la influencia de cada variable independientemente de su 
escala original (Jain, 2024). Seguidamente, la herramienta facilita la evaluación de 
correlaciones entre variables espaciales mediante métodos como el coeficiente de Pearson, 
identificando el grado de similitud y la fuerza de la relación entre factores, lo que permite 
detectar redundancias y ajustar el conjunto de variables explicativas para optimizar el 
modelo (Flores-Juca & Carrera, 2022).  
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El módulo de análisis de cambios calcula la superficie y localización de las transformaciones 
ocurridas entre dos momentos temporales, denominados tiempo inicial (T1) y tiempo final 
(T2) (Fontana et al., 2023; kamaraj & Rangarajan, 2021). MOLUSCE genera 
automáticamente estadísticas básicas que cuantifican la superficie ocupada por cada 
categoría de uso del suelo en ambas fechas, así como los cambios absolutos y porcentuales 
experimentados (Asia Air Survey & Next GIS, 2014). Paralelamente, construye una matriz 
de transición que expresa las probabilidades de cambio entre categorías mediante valores 
entre 0 y 1, calculada mediante multiplicación de matrices que sintetiza las relaciones de 
cambio existentes en el período analizado (Fontana et al., 2023; Principi, 2022). Esta matriz 
constituye un componente esencial del modelo, ya que las tendencias históricas de cambio 
identificadas en el período T1-T2 determinan las proyecciones futuras que el autómata 
celular ejecutará manteniendo el mismo rango temporal (Muhammad et al., 2022). Por 
ejemplo, si T1 corresponde al año 2010 y T2 al 2020, la simulación proyectará cambios 
hacia 2030 asumiendo continuidad en las dinámicas observadas durante la década previa. 
Adicionalmente, el módulo genera un mapa de cambios que espacializa las transiciones 
mediante una capa ráster donde cada clase de transición se identifica con un color 
específico, permitiendo visualizar los patrones geográficos de transformación territorial 
(Principi, 2022; Fontana et al., 2023). 

La modelación del potencial de transición mediante redes neuronales artificiales constituye 
el núcleo metodológico de MOLUSCE. El algoritmo implementa un perceptrón multicapa 
totalmente conectado que utiliza retropropagación clásica con capacidad autónoma para 
analizar la precisión alcanzada durante el entrenamiento y realizar su propia validación, 
almacenando la mejor configuración de pesos en memoria (Lukas et al., 2023). El proceso 
de aprendizaje emplea un esquema estocástico en línea donde se selecciona 
aleatoriamente una muestra del conjunto de entrenamiento y los pesos de la red se 
actualizan iterativamente según la ecuación 2:  

                                       𝑤(𝑛 +  1) =  𝑟 ∗  𝑑𝑤(𝑛) +  𝑚 ∗  𝑑𝑤(𝑛 −  1)                                  (2) 

donde w representa el vector de pesos de neuronas, dw el vector de cambios de pesos, n 
el número de iteración, r la tasa de aprendizaje y m el momento (Asia Air Survey & Next 
GIS, 2014). El usuario define parámetros críticos del entrenamiento, incluyendo el número 
de muestras (típicamente entre 1,000 y 10,000), el modo de muestreo (aleatorio 
estratificado), el tamaño de la vecindad para considerar efectos espaciales locales, la tasa 
de aprendizaje y el momento (valores pequeños como 0.001-0.005 garantizan estabilidad, 
aunque requieren mayor tiempo de procesamiento), el número de capas ocultas 
(generalmente entre 5 y 10) y el número máximo de iteraciones (Asia Air Survey & Next 
GIS, 2014). El error de ajuste se mide mediante el error cuadrático medio de las salidas de 
la red, y el entrenamiento finaliza cuando se alcanza la mejor precisión de validación, 
momento en que la herramienta proporciona gráficos de evolución del error, el error mínimo 
global y la precisión delta (Principi, 2022).  

Una vez entrenada la red neuronal, MOLUSCE aplica el módulo de simulación mediante 
autómatas celulares, que utiliza el algoritmo probabilístico de Monte Carlo para generar 
mapas de potencial de transición. Estos mapas expresan, mediante valores entre 0 (bajo 
potencial) y 100 (alto potencial), la probabilidad de que cada celda cambie de una categoría 
de cobertura a otra (Asia Air Survey & Next GIS, 2014). El simulador opera mediante un 
esquema iterativo: primero toma las probabilidades de transición de la matriz y calcula el 
número de píxeles que deben cambiar para cada clase de transición; posteriormente el 
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modelo escanea las celdas vecinas (según la configuración de vecindad definida) y calcula 
los potenciales de transición considerando tanto las probabilidades globales como las 
influencias espaciales locales; el simulador construye entonces un ráster de certeza que 
mide la confianza del modelo como la diferencia entre los dos potenciales de transición más 
altos de cada píxel; finalmente, para cada clase de transición, el algoritmo identifica las 
celdas con mayor confianza y ejecuta los cambios de categoría correspondientes (Asia Air 
Survey & Next GIS, 2014). Cada iteración del modelo representa un año de evolución del 
sistema, y al finalizar todas las iteraciones programadas, MOLUSCE genera el mapa 
simulado de cobertura futura (Fontana et al., 2023; Lukas et al., 2023). Si se especifican 
múltiples iteraciones, el esquema se repite utilizando el resultado de cada iteración como 
estado inicial para la siguiente, propagando así los cambios a través del tiempo de forma 
acumulativa. El módulo final de validación permite verificar la precisión de la simulación 
mediante tres tipos de estadísticas Kappa que evalúan diferentes aspectos de la 
concordancia entre el mapa simulado y el mapa de validación observado (Lukas et al., 
2023). El índice Kappa general mide la correspondencia global entre ambos mapas y se 
calcula como lo indica la ecuacion 3:  

                                                           𝑘 =
[𝑃(𝐴) −  𝑃(𝐸)]

[1 −  𝑃(𝐸)]
                                                             (3) 

donde P(A) representa la proporción de acuerdo observado y P(E) la proporción de acuerdo 
esperado por azar (Asia Air Survey & Next GIS, 2014). El índice Kappa localización evalúa 
específicamente la similitud en la asignación espacial de las categorías mediante la 
ecuacion 4:  

                                                           𝑘ₗₒ =
[𝑃(𝐴) −  𝑃(𝐸)]

[𝑃ₘₐₓ −  𝑃(𝐸)]
                                                           (4) 

donde Pₘₐₓ representa el máximo acuerdo posible (Asia Air Survey & Next GIS, 2014). 
Finalmente, el Kappa histograma mide la similitud cuantitativa entre los mapas calculándose 
directamente desde sus histogramas como lo muestra la ecuacion 5:  

                                                              𝑘ₕ =
[𝑃ₘₐₓ −  𝑃(𝐸)]

[1 −  𝑃(𝐸)] 
                                                        (5)  

Según la escala de Principi (2022), valores de Kappa inferiores a 0.00 indican desacuerdo, 
entre 0.00-0.20 acuerdo leve, 0.21-0.40 aceptable, 0.41-0.60 moderado, 0.61-0.80 
considerable y 0.81-1.00 excelente. MOLUSCE genera automáticamente estas tres 
métricas junto con matrices de confusión y estadísticas complementarias que permiten 
evaluar integralmente el desempeño del modelo, identificando fortalezas y debilidades en 
la representación tanto cuantitativa como espacial de los cambios simulados (Lukas et al., 
2023). 

4. CASO DE ESTUDIO: CARTAGENA DE 

INDIAS 

Cartagena de Indias se localiza en la costa norte de Colombia, en el departamento de 
Bolívar, región Caribe colombiana. La ciudad constituye uno de los once distritos especiales 
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del país, clasificada como Distrito Turístico, Histórico y Cultural (OECD, 2022). Su 
localización estratégica sobre el Mar Caribe y su rol como puerto marítimo le confieren 
características territoriales particulares que históricamente han determinado su desarrollo 
urbano (ver figura 3). 

Figura 3: Mapa de ubicación de Cartagena de Indias 

 

Fuente: Elaboración de los autores. 

Según datos reportados por la OECD (2022), Cartagena contaba con aproximadamente 1.0 
millón de habitantes en sus núcleos urbanos municipales (cabeceras municipales), 
consolidándose como la quinta ciudad más poblada de Colombia junto con Bogotá (7.4 
millones), Medellín (2.4 millones), Cali (2.2 millones) y Barranquilla (1.2 millones). La ciudad 
forma parte del sistema urbano policéntrico colombiano, donde casi el 40% de la población 
urbana del país (13.2 millones de personas) se concentra en estos cinco municipios 
principales. El crecimiento poblacional registrado en estas cinco ciudades desde 2005 ha 
sido del 11.5%, ligeramente inferior al crecimiento urbano nacional que alcanzó el 15.7% 
en el mismo período (OECD, 2022). El proceso de urbanización en Cartagena, como en 
otras ciudades colombianas, se ha manifestado tanto a través de densificación como de 
expansión urbana. Entre 1990 y 2015, las ciudades colombianas experimentaron un 
fenómeno de dispersión urbana (urban sprawl) evidenciado porque la huella urbana creció 
en promedio 2.50% anualmente mientras la población aumentó 2.28% (Salazar Tamayo & 
Julio Estrada, 2022).  

Este patrón de crecimiento físico superando el demográfico indica una ocupación territorial 
menos eficiente con implicaciones para la provisión de servicios e infraestructuras urbanas. 
El mapa de ubicación (Figura 3) ilustra la configuración territorial actual de Cartagena, 
donde se identifican tres componentes espaciales críticos para el presente estudio. La red 
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vial principal, representada mediante líneas rojas, articula el territorio y constituye una 
variable explicativa fundamental para el modelo CA-ANN, dado que la proximidad a vías 
determina la accesibilidad y por tanto la aptitud para expansión urbana. Los cuerpos de 
agua, identificados en color cian, incluyen sistemas lagunares interiores (Ciénaga de la 
Virgen, Ciénaga de Tesca) y el Mar Caribe, que funcionan como límites naturales al 
crecimiento urbano y reguladores hídricos del territorio. Las áreas de protección ambiental, 
delimitadas en verde, concentran ecosistemas de manglar que proveen servicios 
ecosistémicos estratégicos y están sujetas a normativas de restricción de uso. 

Diversos estudios documentan que la interacción entre procesos de urbanización, presión 
sobre ecosistemas costeros y vulnerabilidad ante eventos climáticos configura escenarios 
de riesgo que demandan enfoques integrados de planificación territorial (Lukas et al., 2023; 
OECD, 2022). En este contexto, Salazar Tamayo & Julio Estrada (2022) advierten que la 
mayoría de las ciudades colombianas duplicaron su extensión urbana en los últimos 10 
años, resultando en alta demanda de suelo y capacidades limitadas de autoridades locales 
para gestión territorial sostenible. Esta dinámica acelerada de expansión, en ausencia de 
mecanismos efectivos de control urbanístico, genera ocupación de áreas con restricciones 
ambientales y aumento de vulnerabilidad socioambiental. 

5. METODOLOGÍA APLICADA 

5.1 Datos de entrada 

El modelo CA-ANN requiere como insumos fundamentales capas ráster de cobertura de 
suelo en dos momentos temporales y un conjunto de variables espaciales que actúan como 
factores explicativos del cambio. Para el presente estudio se implementaron dos modelos 
con estrategias temporales diferenciadas: el Modelo 1 utilizó capas de cobertura 
correspondientes a 2017 (tiempo inicial, T1) y 2021 (tiempo final, T2), mientras que el 
Modelo 2 empleó capas de 2017 y 2024 (ver Figuras 4, 5 y 6).   
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Figura 4: Mapa de cobertura de tierras de Cartagena de Indias (2017) 

 

Fuente: Elaboración de los autores. 

Ambos modelos trabajaron con la misma clasificación temática de ocho categorías: N/A, 
Agua, Árboles, Manglar, Cultivos, Urbanizado, Suelo Desnudo y Pastizal. Las variables 
espaciales seleccionadas como factores de cambio fueron cinco: densidad poblacional, 
pendiente del terreno, distancia euclidiana a vías principales, distancia euclidiana a zonas 
de expansión urbana, y áreas de conservación ambiental. Previo a su incorporación al 
modelo, todas las capas ráster se procesaron para garantizar homogeneidad geométrica, 
es decir, que cada variable contara con el mismo número de filas, columnas y píxeles, así 
como idéntica extensión espacial y sistema de coordenadas (EPSG:9377 - MAGNA-
SIRGAS 2018 / Origen-Nacional). 
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Figura 5: Mapa de cobertura de tierras de Cartagena de Indias (2021) 

 

Fuente: Elaboración de los autores. 

  



 

14 

 

Figura 6: Mapa de cobertura de tierras de Cartagena de Indias (2024) 

 

Fuente: Elaboración de los autores. 
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5.2 Correlación entre variables 

Una vez preparados los datos de entrada, se evaluó la correlación entre las variables 
espaciales mediante el coeficiente de Pearson disponible en el módulo "Evaluating 
correlation" de MOLUSCE. Este análisis determina el grado de similitud y la fuerza de la 
relación entre pares de variables, identificando potenciales redundancias que podrían 
introducir sesgo en el entrenamiento de la red neuronal (Flores-Juca & Carrera, 2022). La 
matriz de correlación generada presenta valores entre -1 y 1, donde valores cercanos a 1 
indican correlación positiva fuerte, cercanos a -1 correlación negativa fuerte, y próximos a 
0 ausencia de correlación lineal. Los resultados del análisis de correlación para el área de 
estudio de Cartagena revelaron las siguientes relaciones entre variables (Tabla 1). 

Tabla 1. Matriz de correlación de Pearson entre variables espaciales explicativas 

Variable 
Densidad 

Poblacional 
Distancia 

Vías 
Distancia Zonas 

Expansión 
Pendiente 

Áreas 
Conservación 

DensidadPoblacional -- -0.381 0.171 -0.074 -0.190 

Distancia Vías -0.381 -- -0.088 -0.240 -0.259 

Distancia Zonas 
Expansión 

0.171 -0.088 -- -0.005 0.122 

Pendiente -0.074 -0.240 -0.005 -- 0.351 

Áreas Conservación -0.190 -0.259 0.122 0.351 -- 

Nota: Los valores en la diagonal (--) representan la autocorrelación perfecta de cada 
variable consigo misma. 
Fuente: Elaboración de los autores. 

El análisis evidencia que ningún par de variables presenta correlación fuerte (r > 0.8), lo 
que descarta problemas severos de multicolinealidad (Principi, 2022). La correlación más 
significativa se observa entre densidad poblacional y distancia a vías (r = -0.381), indicando 
que las áreas más densamente pobladas tienden a ubicarse más cerca de la infraestructura 
vial principal, patrón esperable en contextos urbanos donde la accesibilidad es un factor 
determinante de concentración poblacional. La correlación positiva moderada entre 
pendiente y áreas de conservación (r = 0.351) sugiere que las zonas protegidas tienden a 
localizarse en terrenos con mayor inclinación, posiblemente debido a que estas áreas 
presentan mayores restricciones para el desarrollo urbano. Las correlaciones negativas 
débiles entre distancia a vías y otras variables (-0.240 con pendiente, -0.259 con áreas de 
conservación) indican que la red vial tiende a evitar tanto zonas de topografía accidentada 
como áreas bajo protección ambiental. Dado que todas las correlaciones presentan valores 
moderados a bajos, se conservaron las cinco variables en el modelo, considerando que 
cada una aporta información diferenciada sobre los factores que influyen en el cambio de 
cobertura del suelo. 
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5.3 Cambios de área 

El módulo "Area Changes" de MOLUSCE calcula las estadísticas de transformación entre 
las coberturas del tiempo inicial (T1) y el tiempo final (T2), cuantificando la superficie y 
localización de los procesos de cambio. La herramienta genera automáticamente dos 
productos analíticos: una tabla de estadísticas básicas que presenta la superficie ocupada 
por cada clase en T1 y T2, los cambios absolutos en kilómetros cuadrados y los cambios 
porcentuales (ver Tabla 2); y una matriz de transición que expresa las probabilidades de 
cambio entre categorías mediante valores entre 0 y 1 (Principi, 2022) (ver Tabla 3 y 4). 

La identificación de estas tendencias resulta fundamental porque constituye la base sobre 
la que se realiza la proyección futura, que asume continuidad en las dinámicas observadas 
considerando el mismo rango temporal (Principi, 2022).  Adicionalmente, MOLUSCE genera 
un mapa de cambios que espacializa las transiciones mediante una capa ráster donde cada 
clase de transición se identifica con un código único, permitiendo visualizar los patrones 
geográficos de transformación territorial y detectar sectores con mayor intensidad de 
cambio. 

Tabla 2. Estadísticas básicas de cambios de cobertura para ambos modelos 

Clase 
2017 
(km²) 

2021 
(km²) 

Δ 2017-2021 
(km²) 

2024 
(km²) 

Δ 2017-2024 
(km²) 

NA 2239.34 2239.34 0.00 2239.34 0.00 

Agua 43.08 42.29 -0.79 43.52 +0.44 

Árboles 140.02 136.97 -3.05 134.32 -5.70 

Manglar 34.75 32.23 -2.52 31.24 -3.51 

Cultivos 18.90 17.99 -0.91 17.41 -1.49 

Urbanizado 89.41 98.98 +9.56 100.80 +11.39 

Suelo 
Desnudo 

3.37 1.43 -1.94 1.17 -2.20 

Pastizal 175.20 174.85 -0.35 176.27 +1.07 

Fuente: Elaboración propia a partir de resultados de MOLUSCE en QGIS. 

  



 

17 

 

Tabla 3. Matriz de transición para modelo 1: Período 2017-2021 

Clase NA Agua Árboles Manglar Cultivos Urbanizado 
Suelo 

Desnudo 
Pastizal 

NA 1 0 0 0 0 0 0 0 

Agua 0 0.936 0.013 0.001 0.001 0.013 0 0.002 

Árboles 0 0.003 0.804 0.061 0.002 0.009 0 0.121 

Manglar 0 0.022 0.061 0.832 0.012 0.011 0 0.062 

Cultivos 0 0.003 0.028 0.021 0.66 0.064 0.001 0.026 

Urbanizado 0 0.002 0.004 0.001 0 1 0.001 0.001 

Suelo 
Desnudo 

0 0.06 0.022 0.006 0.006 0.056 0.332 0.251 

Pastizal 0 0.002 0.12 0.002 0.026 0.004 0 0.812 

Fuente: Elaboración propia a partir de resultados de MOLUSCE en QGIS. Los valores 
representan probabilidades de transición (valores entre 0 y 1). Los valores en la diagonal 
representan estabilidad de cada clase. 

Tabla 4. Matriz de transición para modelo 2: Período 2017-2024 

Clase NA Agua Árboles Manglar Cultivos Urbanizado 
Suelo 

Desnudo 
Pastizal 

NA 1.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Agua 0.0 0.908 0.022 0.022 0.006 0.015 0.010 0.018 

Árboles 0.0 0.010 0.748 0.009 0.001 0.027 0.000 0.205 

Manglar 0.0 0.042 0.093 0.791 0.008 0.009 0.000 0.056 

Cultivos 0.0 0.004 0.031 0.025 0.648 0.039 0.000 0.253 

Urbanizado 0.0 0.003 0.010 0.000 0.000 0.969 0.001 0.017 

Suelo 
Desnudo 

0.0 0.118 0.046 0.063 0.014 0.313 0.138 0.307 

Pastizal 0.0 0.005 0.135 0.003 0.025 0.044 0.001 0.785 

Fuente: Elaboración propia a partir de resultados de MOLUSCE en QGIS. Los valores 
representan probabilidades de transición (valores entre 0 y 1). Los valores en la diagonal 
representan estabilidad de cada clase. 

5.4 Modelo de transición 

El modelamiento del potencial de transición se realizó mediante redes neuronales 
artificiales utilizando la arquitectura de perceptrón multicapa completamente conectado 
disponible en MOLUSCE. El proceso inicia con la definición del número de muestras y el 
modo de muestreo: para ambos modelos se especificaron 10,000 puntos distribuidos 
aleatoriamente sobre el territorio, garantizando representatividad espacial de las diferentes 
combinaciones de coberturas y variables explicativas. La configuración de parámetros de 
entrenamiento fue idéntica para ambos modelos (Tabla 5), buscando consistencia 
metodológica que permitiera comparar el desempeño predictivo entre períodos. 
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Tabla 5. Configuración de parámetros de la red neuronal artificial 

Parámetro Valor 

Modo de muestreo Aleatorio (Random) 

Número de muestras 10,000 

Método Perceptrón multicapa (Multi-layer Perceptron) 

Vecindad (Neighbourhood) 1 px (Moore 3×3) 

Tasa de aprendizaje (Learning Rate) 0.001 

Momento (Momentum) 0.005 

Capas ocultas (Hidden Layers) 8 

Iteraciones máximas 950 

Fuente: Elaboración de los autores. 

5.5 Modelo 1 (2017-2021) 

El entrenamiento del Modelo 1 alcanzó un índice Kappa de validación de 0.87342, 
clasificándose como "excelente" según la escala de Principi (2022). La curva de aprendizaje 
(Figura 7) muestra la evolución del error cuadrático medio durante las iteraciones, donde la 
línea verde representa el error de entrenamiento y la línea roja el error de validación. Se 
observa una convergencia rápida del error durante las primeras 100 iteraciones, seguida 
de estabilización en valores bajos (aproximadamente 0.004), indicando que la red logró 
capturar efectivamente los patrones de cambio del período 2017-2021. El error mínimo de 
validación alcanzado fue de 0.00398, con una precisión delta de -0.00013. 

Figura 7: Curva de aprendizaje del Modelo 1 (2017-2021) mostrando evolución del error 
de entrenamiento y validación

 

Fuente: Elaboración de los autores. 
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5.6 Modelo 2 (2017-2024) 

El entrenamiento del Modelo 2 alcanzó un índice Kappa de validación de 0.88035, 

ligeramente superior al Modelo 1, confirmando la robustez del enfoque CA-ANN para este 

contexto territorial. La curva de aprendizaje (Figura 8) presenta un patrón similar de 

convergencia rápida inicial, con estabilización del error en niveles incluso más bajos que el 

Modelo 1 (aproximadamente 0.003). El error mínimo de validación alcanzado fue de 

0.00347, con una precisión delta de -0.00030. La diferencia positiva de aproximadamente 

0.7 puntos en el índice Kappa entre ambos modelos sugiere que el período más extenso (7 

años) proporcionó mayor información para el aprendizaje de patrones complejos de 

transición territorial. 

Figura 8: Curva de aprendizaje del Modelo 2 (2017-2024) mostrando evolución del error 
de entrenamiento y validación 

 

Fuente: Elaboración de los autores. 

Los valores Kappa superiores a 0.80 en ambos modelos confirman la capacidad de las 

redes neuronales para identificar relaciones complejas y no lineales entre las variables 

explicativas y las probabilidades de transición entre categorías de cobertura. Las curvas de 

aprendizaje evidencian ausencia de sobreajuste (overfitting), dado que los errores de 

entrenamiento y validación convergen de manera estable sin divergencias significativas en 

las iteraciones finales. Esta estabilidad en el entrenamiento garantiza que los modelos 

capturan patrones generalizables del territorio y no simplemente memorizan las muestras 

de entrenamiento, lo cual resulta esencial para la confiabilidad de las proyecciones futuras. 
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6. RESULTADOS 

6.1 Simulación de uso del suelo 2024 

La simulación del Modelo 1 (2017-2021) proyectó un escenario a 2024 que fue comparado 

con el mapa de cobertura real observado en 2024. El mapa simulado (Figura 9) muestra la 

distribución espacial de las categorías de cobertura predichas por el modelo CA-ANN. 

Figura 9: Mapa de cobertura de suelo simulado para 2024 mediante Modelo 1 

 

Fuente: Elaboración de los autores. 

La validación del modelo arrojó los siguientes índices de concordancia: 
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• Kappa general (overall): 0.92190 

• Kappa histograma: 0.99531 

• Kappa localización: 0.92624 

• Porcentaje de correctitud: 97.46% 

Figura 10: Gráfico de resolución múltiple mostrando la validación del modelo 

 

Fuente: Elaboración de los autores.  

La Tabla 6 presenta la comparación cuantitativa entre las superficies observadas y 
simuladas: 

Tabla 6. Comparación de superficies entre cobertura real 2024 y simulación 2024 (Modelo 
1) 

Clase 2024 Real (km²) 2024 Simulado (km²) Δ (km²) Error (%) 

NA 2239.34 2239.34 0.00 0.00 

Agua 43.52 42.28 -1.24 -2.85 

Árboles 134.32 136.70 +2.38 +1.77 

Manglar 31.24 32.22 +0.99 +3.17 

Cultivos 17.41 17.98 +0.56 +3.22 

Urbanizado 100.80 99.48 -1.32 -1.31 

Suelo_Desnudo 1.17 1.43 +0.26 +22.22 

Pastizal 176.27 174.64 -1.63 -0.92 

Fuente: Elaboración propia a partir de resultados de MOLUSCE en QGIS. 

Los valores Kappa superiores a 0.92 confirman la alta capacidad predictiva del modelo. Los 
errores en superficie son menores al 3% para la mayoría de clases, excepto Suelo Desnudo 
que, por ocupar una superficie mínima (1.17 km²), presenta mayor error porcentual pese a 
una diferencia absoluta de solo 0.26 km². La clase Urbanizado muestra una precisión del 
98.7%, validando la efectividad del enfoque CA-ANN para proyectar escenarios de 
expansión urbana. 
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6.2 Simulación de uso del suelo 2031 

La proyección del Modelo 2 (2017-2024) simuló el escenario de cobertura de suelo para el 
año 2031 mediante una iteración de siete años a partir de la capa base de 2024. El mapa 
resultante (Figura 11) muestra la distribución espacial proyectada de las categorías de 
cobertura según las tendencias observadas durante el período 2017-2024 para el año 2031. 

Figura 11: Mapa de cobertura de suelo proyectado para 2031 mediante Modelo 2 

 

Fuente: Elaboración de los autores. 
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La Tabla 7 presenta las proyecciones cuantitativas de cambio para cada categoría de 

cobertura entre 2024 y 2031: 

Tabla 7. Proyección de cambios de cobertura 2024-2031 (Modelo 2) 

Clase 2024 (km²) 2031 Proyectado (km²) Δ (km²) Δ (%) 

NA 2239.34 2239.34 0.00 0.00 

Agua 43.52 43.52 0.00 0.00 

Árboles 134.32 134.02 -0.29 -0.22 

Manglar 31.24 31.23 -0.01 -0.03 

Cultivos 17.41 17.40 -0.01 -0.06 

Urbanizado 100.80 101.17 +0.37 +0.37 

Suelo_Desnudo 1.17 1.17 0.00 0.00 

Pastizal 176.27 176.22 -0.06 -0.03 

Fuente: Elaboración de los autores. 

La proyección muestra cambios mínimos en todas las categorías durante el período 2024-

2031. La clase Urbanizado presenta un incremento de apenas +0.37 km² (+0.37%), 

equivalente a una tasa de crecimiento de +0.05 km²/año. Las coberturas naturales muestran 

pérdidas marginales: Árboles -0.29 km², Manglar -0.01 km², Cultivos -0.01 km² y Pastizal -

0.06 km².  

El crecimiento desacelerado proyectado por el modelo se atribuye principalmente a la 

restricción impuesta por la variable de áreas de conservación ambiental, la cual supone que 

estas zonas permanecerán inalteradas según la normativa vigente. Sin embargo, la 

experiencia empírica en contextos urbanos colombianos documenta que frecuentemente 

estas áreas resultan vulneradas por procesos de ocupación irregular y expansión urbana 

no planificada, lo que sugiere que la proyección podría subestimar el crecimiento real si no 

se implementan mecanismos efectivos de control territorial. 
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CONCLUSIONES Y RECOMENDACIONES 

El desarrollo de dos modelos CA–ANN en MOLUSCE permitió analizar las dinámicas de 
cambio de cobertura del suelo en Cartagena de Indias durante el período 2017–2024 y 
proyectar la expansión urbana hacia 2031. La estrategia dual de modelación validó la 
efectividad del enfoque y evidenció patrones espaciales críticos de transformación 
territorial. El Modelo 1 alcanzó un índice Kappa de entrenamiento de 0.8734 y de validación 
de 0.9219, con una precisión global del 97.46 % al comparar la proyección 2025 frente a 
los datos reales de 2024, lo que confirma la capacidad del enfoque CA–ANN para reproducir 
con alta fidelidad los patrones de cambio territorial en contextos urbanos costeros. Por su 
parte, el Modelo 2, calibrado con un período temporal más amplio, obtuvo un Kappa de 
0.8803, demostrando consistencia metodológica y capacidad de generalización del modelo. 
Durante el intervalo 2017–2024, la superficie urbanizada aumentó +11.39 km² (+12.7 %), 
mientras que el manglar y la cobertura arbórea se redujeron en –3.51 km² (–10.1 %) y –
5.70 km² (–4.1 %), respectivamente. El principal patrón de conversión correspondió al paso 
de cultivos a zonas urbanizadas (65.9 %), lo que refleja un proceso de desagrarización 
periurbana. Asimismo, se identificó un cambio de régimen en la dinámica urbana, 
caracterizado por una etapa acelerada entre 2017 y 2021 (+2.39 km²/año) seguida de una 
desaceleración entre 2021 y 2024 (+0.61 km²/año). 

La proyección hacia 2031 muestra un crecimiento urbano mínimo (+0.37 km² en siete años), 
condicionado por la restricción espacial impuesta por las áreas de conservación. Este 
escenario asume un cumplimiento normativo estricto, condición que podría no reflejar la 
realidad territorial, dada la frecuencia de ocupaciones informales en zonas protegidas de 
ciudades colombianas. En consecuencia, el modelo podría subestimar la expansión real si 
no se consolidan mecanismos efectivos de control del suelo. En cuanto a las correlaciones 
espaciales, se observó una relación negativa moderada entre densidad poblacional y 
distancia a vías (r = –0.381), confirmando el papel determinante de la accesibilidad en la 
configuración urbana. La correlación positiva entre pendiente y áreas de conservación (r = 
0.351) indica que las zonas protegidas tienden a localizarse en terrenos con mayores 
restricciones topográficas. 

De los resultados obtenidos se derivan varias recomendaciones orientadas al 
perfeccionamiento del modelo y su aplicabilidad en la gestión territorial. Es necesario 
ampliar el conjunto de variables explicativas incorporando factores socioeconómicos como 
el precio del suelo, el índice de pobreza o la proximidad a equipamientos urbanos, que 
podrían mejorar la capacidad predictiva. Igualmente, resulta pertinente incluir la distancia a 
asentamientos informales, dado que estos suelen actuar como núcleos de expansión 
urbana no planificada. Se recomienda actualizar periódicamente el modelo, idealmente 
cada tres o cuatro años, utilizando coberturas recientes y datos censales que permitan 
recalibrar los parámetros y detectar posibles variaciones en los patrones de cambio. 
También se sugiere desarrollar modelos diferenciados para períodos con y sin 
perturbaciones extraordinarias, lo que permitiría distinguir entre tendencias estructurales y 
eventos coyunturales. En términos técnicos, sería conveniente explorar arquitecturas 
neuronales más profundas, con un mayor número de capas ocultas y muestras de 
entrenamiento más amplias, a fin de evaluar mejoras potenciales en la precisión del 
aprendizaje.  
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Del mismo modo, la generación de escenarios alternativos mediante el ajuste manual de 
las probabilidades de transición permitiría representar distintos niveles de cumplimiento 
normativo sobre áreas protegidas, brindando así una herramienta más flexible para la toma 
de decisiones. Finalmente, se propone integrar proyecciones demográficas por sectores 
para ponderar la probabilidad de expansión según la presión poblacional diferencial, y 
validar los resultados mediante procesos participativos con actores locales, contrastando 
las zonas simuladas con aquellas donde efectivamente se registró expansión no prevista. 
Estas acciones contribuirían a fortalecer la pertinencia del modelo CA–ANN como 
instrumento de apoyo a la planificación territorial sostenible en contextos urbanos costeros. 
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