
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Identificación de procesos 
de Gentrificación Urbana: 

Modelo Random Forest 
Aplicado a Cartagena, 

Colombia 

NÚMERO 01 

Diciembre 2025 

Autores: 

Laima Guatecique Lidueña 

José Daniel González Agudelo 

 

 



 

 

El Centro de Estudios Territoriales de la Secretaría de 

Planeación de Cartagena busca generar impactos 

territoriales en los contextos local y regional a partir de:  

I) generar modelos de análisis espacial, estudios prospectivos y 

herramientas de monitoreo que permiten evaluar el impacto de 

las intervenciones en el territorio, promoviendo una gobernanza 

basada en evidencia y una gestión integral del territorio que 

garantice la equidad, la resiliencia y la sostenibilidad del Distrito 

de Cartagena de Indias; II) promover la apropiación social del 

conocimiento desde de la difusión de los procesos de 

investigación y la participación de actores de los diferentes 

sectores del ecosistema del SNCTEI y la sociedad civil; III) la 

vinculación en redes especializadas de conocimiento sobre 

estudios urbanos y territoriales; y IV) la participación en el 

Centro de estudiantes de pregrado y posgrado con el fin de 

fortalecer la producción científica. 

 

Cartagena de Indias, Colombia 

Casa Arcadia, Calle 26 # 21-164 

centrodeinvestigacion@cartagena.gov.co 



 

1 

 

Identificación de procesos de Gentrificación 

Urbana: Modelo Random Forest Aplicado a 

Cartagena, Colombia 

Laima Guatecique Lidueña 

José Daniel González Agudelo 

Resumen 

Los avances recientes en herramientas para identificar procesos de gentrificación 
dentro de dinámicas urbanas han impulsado el uso de algoritmos de aprendizaje 
automático, capaces de ofrecer predicciones y análisis más precisos en los estudios 
sobre urbanización y transformación socioespacial. En este contexto, desarrollamos 
un modelo de Machine Learning basado en Random Forest para estimar la 
probabilidad de gentrificación en los barrios de Cartagena de Indias. El cambio 
urbano se evalúa mediante variables socioeconómicas extraídas de datos censales, 
complementadas con un indicador que clasifica la presencia de transformaciones 
en la dinámica urbana. El modelo predice el cambio entre 2005 y 2018 con una 
precisión (accuracy) del 91,4%. Los resultados evidencian una expansión de la 
gentrificación en la zona norte de la ciudad y en el centro, particularmente en el 
centro histórico. Se prevé que estos hallazgos ofrezcan a los responsables de 
políticas públicas una herramienta eficaz para identificar con mayor exactitud las 
áreas con mayor probabilidad de experimentar gentrificación. Esta capacidad 
predictiva puede orientar la formulación de intervenciones y estrategias que 
promuevan un desarrollo urbano más equitativo, especialmente en beneficio de las 
comunidades vulnerables afectadas por los procesos de transformación barrial. 

Palabras clave: Cartagena, random forest, machine learning, gentrificación, 

dinámica urbana, variables socioeconómicas 
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Identification of Urban Gentrification 

Processes: Random Forest Model applied to 

Cartagena, Colombia 

Laima Guatecique Lidueña 

José Daniel González Agudelo 

Abstract 

Recent advances in tools for identifying gentrification processes within urban 
dynamics have encouraged the use of machine learning algorithms, which offer 
more precise predictions and analyses in the study of urbanization and socio-spatial 
transformation. In this context, we developed a Machine Learning model based on 
Random Forest to estimate the probability of gentrification in the neighborhoods of 
Cartagena de Indias. Urban change is assessed using socioeconomic variables 
derived from census data, complemented by an indicator that classifies the presence 
of transformations in urban dynamics.The model predicts change between 2005 and 
2018 with an accuracy of 91.4%. The results show an expansion of gentrification in 
the northern part of the city and in the central area, particularly in the historic center. 
These findings are expected to provide policymakers with an effective tool to more 
accurately identify areas with a higher likelihood of experiencing gentrification. This 
predictive capacity can guide the development of interventions and strategies that 
promote more equitable urban development, especially for vulnerable communities 
affected by neighborhood transformation processes. 

Keywords: Cartagena, random forest, machine learning, gentrification, urban 

dynamics, socioeconomic variables 
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1. INTRODUCCIÓN  

La gentrificación se refiere a la llegada de hogares con mayor movilidad social a vecindarios 

con un menor nivel socioeconómico (Salinas Arreortua, 2013). Esto presenta un cambio 

social y transformación urbana dentro de barrios de clases populares, que se ven 

enfrentados a desplazarse gracias a los nuevos residentes de clase media y alta, que traen 

consigo directa o indirectamente (es decir por cuenta propia o inversión privada de agentes 

inmobiliarios) mejoras en infraestructura y viviendas, aunado a un aumento de valor en el 

suelo (Villanueva & Vallbona, 2021). Este fenómeno de dinámica urbana se observa por un 

gran número de ciudades mundiales, principalmente aquellas que cuentan con un fuerte 

atractivo turístico.  

A lo largo de los años se ha presentado un debate sobre el concepto de gentrificación, dado 

que estos procesos no siguen un reglas o pautas establecidas debido a que está sujeto a 

las dinámicas socio-espaciales y la resistencia de las poblaciones al cambio, sin embargo, 

presenta sus orígenes a mediados del siglo XX con el fin de explicar acontecimientos 

repetitivos en importantes ciudades anglosajonas que dejaban de ser centros con 

actividades productivas y pasaban a tener su economía basada en actividades financieras, 

convirtiéndose en espacios de inversión y especulación inmobiliaria (Castro et al., 2020; 

Perren & Cabezas, 2018). Descrito por primera vez en 1964 por la socióloga británica Ruth 

Glass en un análisis en la ciudad de Londres, donde residencias modestas de 

arrendamiento de corto plazo se convertían en alojamientos caros y lujosos, los cuales se 

iban expandiendo rápidamente hasta desembocar en desalojo masivo de los inquilinos 

obreros que permanecían allí originalmente (Salinas Arreortua, 2013).  

En el contexto moderno se han desarrollado diversos estudios que buscan evidenciar los 

nuevos procesos de gentrificación vinculados al capitalismo de plataformas. Un trabajo 

reciente titulado “Ciudades y globalización: capitalismo de plataformas y gentrificación en 

Nueva York, Londres y Ciudad de México (2008–2023)” (Mejía, 2024), analiza la relación 

entre ambos fenómenos a partir del auge de los hospedajes de renta corta, especialmente 

a través de plataformas como Airbnb. Mediante un enfoque cualitativo, el estudio examina 

leyes locales, informes, acuerdos, propuestas de ley, ordenanzas, comunicaciones 

oficiales, censos y bases de datos con información sobre Airbnb. Los hallazgos plantean 

que la gentrificación contemporánea adquiere un carácter comercial, derivado de las 

transformaciones demográficas, urbanas y sociales con fines mercantiles, lo que ha 

generado la expulsión de habitantes de bajos ingresos ante el incremento en el costo de 

vida. El estudio demuestra que dichas ciudades utilizan a Airbnb como un mecanismo de 

gentrificación debido a sus características: alta escalabilidad de operaciones a nivel global, 

corporativización de la gobernanza de datos, implementación de un modelo de negocio 

híbrido que combina elementos de mercado y empresa, externalización de costos y riesgos 

de producción, uso de narrativas asociadas a la economía compartida y la captura de valor. 

En el caso de Nueva York, la empresa combinó estrategias de lobby, litigios, alianzas 

políticas y campañas mediáticas para legitimar una actividad inicialmente ilegal, 

promoviendo una imagen de intermediario neutral y socialmente responsable. En Londres, 

su influencia fue menor debido a que los políticos locales emplearon la “regulación 

desregulada” como herramienta de formalización, lo que permitió la expansión de la 
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plataforma con escasa oposición social. En contraste, en la Ciudad de México, Airbnb 

ejerció un fuerte poder estructural al establecer alianzas con el gobierno y con organismos 

internacionales como la UNESCO y la Organización Mundial del Turismo (OMT), 

impulsando políticas favorables bajo el discurso del turismo sostenible y el trabajo remoto, 

las cuales incluso influyeron en cambios en las políticas migratorias locales. 

Otro estudio importante situado en el contexto latinoamericano es ¿Renovación sin 

gentrificación? Hacia un abordaje crítico de procesos urbanos excluyentes en América 

Latina. Casos en Buenos Aires (Lerena-Rongvaux, 2023), donde explica cómo la ciudad de 

Buenos Aires ha experimentado políticas de renovación urbana encaminadas a la 

valorización de su zona sur la Comuna 4, área rezagada por el Estado. La metodología 

utilizada fue cualicuantitativa bajo cuatro enfoques de dinámica: estructura 

sociohabitacional (usando indicadores demográficos, económicos y habitacionales), 

valorización del mercado inmobiliario (usando precio promedio absoluto por metro cuadrado 

por tipología inmobiliaria) y de suelo, políticas de renovación (considerando leyes distritales 

y planes urbanos) y finalmente, el tejido organizativo y comunitario (indicadores relacionales 

y de acción colectiva). La autora concluye el estudio sobre la gentrificación para medir la 

renovación urbana y desplazamiento poblacional tiene limitaciones en América latina, 

donde pueden existir procesos de reinversión sin expulsión inmediata de habitantes. Por 

ello, se propone la noción de “renovación urbana excluyente”, que permite anticipar 

desigualdades incluso sin desplazamientos evidentes. El estudio examina los efectos de 

los Distritos Económicos del Sur de Buenos Aires (Tecnológico y de las Artes), mostrando 

que ambos experimentan valorización del suelo, aunque con resultados distintos: en el 

Tecnológico hay valorización sin gran conflicto social, mientras que en el de las Artes la 

precariedad habitacional genera tensiones y desplazamientos. En conjunto, se evidencia 

un proceso de renovación urbana excluyente, impulsado por políticas públicas que 

favorecen la inversión sin mecanismos que protejan a los sectores más vulnerables. 

El caso de Cartagena, focal de estudio de este artículo, representa un proceso de 

gentrificación no solo a nivel socioeconómico, sino también social e histórico, el efecto 

expulsión de la población de ingresos bajos de los barrios populares es notable, en el caso 

de Getsemaní, en alrededor de quince años, la población residente se redujo en un 80 %, 

pasando de casi 10.500 personas en 2005 a poco más de 2.300 en 2018, según El Diario 

(España, citado en Barrios Uribe, 2024) y en el 2025 contando tan solo con 448 habitantes 

(Universidad de Cartagena, 2025). Este drástico descenso refleja un profundo impacto 

social: los pocos habitantes que permanecen resisten al alza del valor del suelo y al avance 

de un turismo desregulado, mientras defienden colectivamente su derecho a seguir 

habitando el territorio. Para el ámbito latinoamericano y en especial ciudades como 

Cartagena la gentrificación ha sido estudiada como dinámica urbana impulsada tanto por 

capital inmobiliario como por políticas públicas que dejan en un plano secundario, e incluso 

marginales el impacto social en consecuencia de priorizar el desarrollo económico, 

utilizando como principal vía la turistificación, mejorando la calidad paisajística.  

Para Cartagena también se aplica el fenómeno de gentrificación trasnacional, el cual incluye 

como premisas de renovación urbanas instrumentos de capital internacional, turismo global 

y migraciones de élites, cuyos centros históricos son los más afectados, debido a la 

competencia por el espacio urbano (Delgado et al., 2025). Si bien la forma metodológica 
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para estudiar la gentrificación ha sido principalmente cualitativa, y más recientemente con 

un enfoque cuantitativo, resulta indispensable utilizar modelados predictivos para detectar 

tendencias urbanas, basándose en datos censales (Maya et al., 2024; Yee & Dennett, 2022; 

Owens, 2012; Wei & Knox, 2013). Los modelos basados en Machine Learning tienen gran 

capacidad para manejar datos de alta dimensionalidad y encontrar patrones gracias a su 

capacidad de aprendizaje y mejoramiento a partir de los datos. Además, esta técnica 

permitirá identificar barrios o vecindarios expuestos a posibles procesos de gentrificación. 

Este estudio propone identificar los barrios gentrificados y propensos a la gentrificación 

(gentrificables) de Cartagena mediante un modelo de aprendizaje de ensamblaje (Bootstrap 

Aggregating) Random Forest, perteneciente al grupo de modelos de aprendizaje 

supervisado, donde el aprendizaje parte de los datos etiquetados —en este caso, la etiqueta 

“gentrificación”, construida a partir de criterios socioeconómicos con datos censales en los 

periodos de 2005 y 2018 (Loukaitou-Sideris et al., 2019). 

2. CASOS DE ESTUDIO 

En el estudio Understanding Urban Gentrification through Machine Learning: Predicting 

Neighbourhood Change in London (Reades et al., 2019), se realiza un análisis 

socioeconómico de los procesos de transición y los patrones de cambio en los barrios de 

Londres, utilizando datos censales de 2001 y 2011 para predecir las zonas con mayor 

probabilidad de gentrificación hacia 2021. Para ello, se aplica un modelo de Random Forest, 

destacando su baja complejidad en la hiperparametrización, su capacidad para reducir el 

sesgo y la forma en que la aleatorización de las muestras contribuye a evitar el sobreajuste. 

Los resultados muestran una mejora sostenida en el Este Interior de Londres y su expansión 

hacia los distritos exteriores, mientras que algunas zonas periféricas presentan signos de 

deterioro. Los cambios en el estatus de los barrios se asocian principalmente con factores 

económicos y laborales, más que con aspectos del entorno físico. A pesar de la 

incertidumbre generada por factores políticos, como el Brexit, el estudio evidencia el 

potencial del aprendizaje automático para anticipar transformaciones urbanas y propone 

una integración entre enfoques cualitativos y cuantitativos con el fin de promover procesos 

de regeneración urbana que no impliquen desplazamiento social. Otro estudio relevante es 

Building a Predictive Machine Learning Model of Gentrification in Sydney (Thackway et al., 

2023). En esta investigación se emplea un modelo de machine learning basado en árboles 

de decisión para predecir el cambio urbano en Sídney, utilizando diversos índices 

socioeconómicos. El modelo predice la gentrificación mediante una combinación de 

información censal y no censal correspondiente a los años 2011 y 2016, alcanzando un 

nivel de certeza del 74,7% según el indicador AUC-ROC. Posteriormente, se realiza una 

extrapolación hacia 2021, la cual evidencia una expansión desde el centro de la ciudad 

hacia las zonas periféricas, principalmente en Homebush, Bankstown, Auburn, Ryde y 

Sutherland. Para el modelado se emplearon datos sobre precios de vivienda y desarrollo 

urbano, los cuales confirman un efecto de desplazamiento que se propaga más allá del 

centro urbano. Finalmente, el estudio discute la necesidad de regular las políticas 

relacionadas con la vivienda pública, complementándolas con medidas de control de 

alquileres e impuestos redistributivos. 
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El estudio Identifying Gentrification using Machine Learning (Yoo & Census Bureau, 2023) 

explora técnicas de Machine learning para predecir unidades de viviendas propensas al 

riesgo de la gentrificación, usando encuestas de hogares “American Housing Survey” (AHS, 

por sus siglas en inglés) para el área metropolitana de de Wasgington D.C, cuyos datos 

fueron proporcionados por Metropolitan Statistical Area (MSA), American Community 

Survey, Commercial real estate website y de páginas web (riskfactor.com, 

climatecheck.com, Walkscore.com y GreatSchools.org). El AHS son datos de tipo panel que 

contiene información socioeconómica de las viviendas y sus características físicas que 

permiten evaluar que tan probable es que dichas viviendas sean desplazadas. Los periodos 

utilizados fueron 2015, 2017 y 2019, se usaron variables la edad, educación, estado civil, 

características habitacionales de las viviendas, servicios cercanos, riesgos ambientales, 

accesibilidad urbana e ingresos anteriores y actuales del hogar. El articulo construye la 

variable de “Gentrificado” usando 3 crítiterios principales: 1) Todos los miembros de los 

hogares en 2017 y 2019 son residentes distintos a los 2015, 2) el crecimiento del ingreso 

del hogar es mayor a la tasa de crecimiento a nivel censal, 3) La llegada de los nuevos 

residentes es a causa de mejores empleos, viviendas o vecindarios. Se identificaron 250 

unidades gentrificadas. Una vez se obtuvo la variable etiquetada Y (Gentrificado) se 

realizaron 6 modelos de clasificación para la identificación de la gentrificación previa:  

Logistic Regression (LR), K-nearest Neighbors Classifier (KNN), Random Forest (RF), 

Support Vector Machines (SVM), and Gradient Boosting (GB). Se resalta que los mejores 

modelos son el Random Forest y el Gradient Boosting, el primero posee un conjunto de 

árboles de decisiones que operan de manera paralela con una muestra aleatoria de los 

datos (bootstrap) y con un subconjunto aleatorio de variables. 

Luego, el resultado final se obtiene por votación (clasificación) o promedio (regresión), que 

combina arboles de decisión minimizando el gradiente de error al corregir los errores de los 

árboles anteriores de manera secuencial que captura relaciones no lineales complejas, 

contiene alta precisión predictiva, y maneja la colinealidad y los valores atípicos. El 

resultado mostró que el performance del mejor modelo fue el de Random Forest, con un 

Accuracy de 0,83, una precisión de 0,81, recall de 0,87 y un F1 Score de 0,84. Finalmente 

se clasifico 3 categorías de genrtificación: alto riesgo, medio riesgo y bajo riesgo. El estudio 

destaca el uso del nowcasting o predicción en tiempo real de la gentrificación, mostrando 

que en el área metropolitana de Washington D.C. este proceso está impulsado 

principalmente por jóvenes adultos con alta formación académica que buscan apartamentos 

en zonas urbanas caminables. En conjunto, demuestra que aplicar modelos de inteligencia 

artificial para anticipar la gentrificación, en lugar de analizarla solo después de ocurrida, 

puede ayudar a los responsables de política pública a actuar de forma preventiva y diseñar 

estrategias más efectivas frente a este fenómeno urbano. 

En el estudio Stratifying and predicting patterns of neighbourhood change and gentrification: 

An urban analytics approach  (Yee & Dennett, 2022) se hace uso del machine learning 

aplicando el logatirmo de Random Forest para modelar los patrones de mejora o 

revalorización de los barrios de Londres, mediante datos censales, para luego predecir 

estados de vecindarios hacia el 2021, las bases de datos utilizadas son The Office for 

Natioal Statistics (ONS), The Consumer Data Research Centre (CDRC) y The Greater 

London Authority (GLA). Las variables utilizadas fueron la composición socioeconómica de 
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los vecindarios, las características locales de la vivienda, nuevas construcciones 

residenciales, reconversiones o rehabilitaciones de viviendas existentes, registros 

electorales, bases de datos de consumo, transacciones inmobiliarias y rotaciones 

poblacionales, los periodos utilizados fueron 2001 y 2011. El estudio identificó y clasificó 

diversos tipos de cambios urbanos en Londres para los años anteriormente mencionados, 

se destaca que hubo un aumento de la gentrificación en el centro de Londres, 

principalmente en los distritos de Hammersmith, Fulham, Kensington y Chelsea y Newham, 

sin embargo, también se presentó el fenómeno de pérdida de cohesión social y 

desplazamientos de grupos de bajo ingresos por lo de alto ingresos, finalmente el artículo 

propone considerar políticas urbanas más equitativas. 

3. MARCO TEORICO Y REFERENCIAL 

En esta sección se presentan los fundamentos teóricos esenciales que sustentan el modelo 
de clasificación propuesto para la predicción de gentrificación. Se abordan de forma concisa 
los conceptos fundamentales del aprendizaje automático y los modelos de clasificación, 
estableciendo las diferencias entre aprendizaje supervisado y no supervisado junto con sus 
respectivas ventajas y limitaciones. Posteriormente, se realiza una revisión de los 
principales algoritmos de clasificación existentes en la literatura, para finalmente profundizar 
en los fundamentos teóricos del algoritmo Random Forest, que constituye el modelo 
empleado en la presente investigación, detallando su estructura, funcionamiento y 
propiedades que lo hacen idóneo para problemas de clasificación complejos. 

3.1 Modelos de clasificación con Machine Learning 

El aprendizaje automático o machine learning (ML) es un campo de la inteligencia artificial 
que se enfoca en el desarrollo de algoritmos capaces de aprender patrones a partir de datos 
de entrada, sin ser explícitamente programados para cada tarea específica. Según Shalev-
Shwartz & Ben-David (2014), el aprendizaje puede entenderse como el proceso de convertir 
experiencia en conocimiento, donde la entrada de un algoritmo de aprendizaje son datos 
de entrenamiento que representan experiencia, y la salida es un programa que puede 
realizar alguna tarea. Los algoritmos de ML mejoran su desempeño en tareas específicas 
a medida que adquieren más experiencia, definiendo el "aspecto de aprendizaje" como el 
hecho de que mientras mejor se desempeña un algoritmo en una tarea específica, mejor 
ha aprendido de esa experiencia (Casali et al., 2022; Thackway et al., 2023).  Los modelos 
de clasificación constituyen una categoría fundamental dentro del aprendizaje automático 
supervisado, cuyo objetivo es asignar instancias u observaciones a categorías o clases 
predefinidas (The MathWorks, 2016). La Figura 1 muestra los dos tipos de problemas de 
clasificación abordados por estas técnicas. 
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Figura 1. a) Problema de clasificación binario. b) Problema de clasificación multiclase 

 

Fuente: The MathWorks (2016). 

Formalmente, un problema de clasificación busca aprender una función predictora h: X → 
Y, donde X representa el espacio de características de entrada (conjunto de instancias) de 
Y corresponde al conjunto finito de etiquetas o clases posibles (Fernández-Delgado et al., 
2014; Shalev-Shwartz & Ben-David, 2014).  

En el caso más simple, la clasificación binaria involucra dos clases, típicamente 
representadas como Y = {0,1} o Y = {-1, +1}, sin embargo, muchos problemas del mundo 
real requieren clasificación multiclase, donde Y puede contener múltiples categorías; por 
ejemplo, en la clasificación de documentos según tema, X sería el conjunto de todos los 
documentos posibles e Y el conjunto de tópicos disponibles (Shalev-Shwartz & Ben-David, 
2014; The MathWorks, 2016). El proceso de aprendizaje en modelos de clasificación se 
fundamenta en un conjunto de datos de entrenamiento S = {(x₁, y₁), ..., (xₘ, yₘ)}, donde 
cada par (xᵢ, yᵢ) consiste en una instancia xᵢ del espacio de características y su etiqueta 
correspondiente yᵢ (Fernández-Delgado et al., 2014; Shalev-Shwartz & Ben-David, 2014). A 
partir de estos ejemplos etiquetados, el algoritmo de aprendizaje debe generar un 
clasificador o hipótesis h que pueda predecir con precisión las etiquetas de nuevas 
instancias no observadas durante el entrenamiento, este clasificador representa la regla de 
decisión aprendida que el modelo utilizará para clasificar datos futuros (Fernández-Delgado 
et al., 2014). La capacidad de generalización (es decir, la habilidad del modelo para realizar 
predicciones correctas sobre datos nuevos) constituye un aspecto crucial que distingue el 
aprendizaje efectivo de la simple memorización de los datos de entrenamiento (Fernández-
Delgado et al., 2014; Shalev-Shwartz & Ben-David, 2014; The MathWorks, 2016). 

3.1.1 Aprendizaje supervisado y no supervisado 

Los algoritmos de aprendizaje automático se dividen en dos grandes grupos según la 
naturaleza de los datos de entrenamiento y el tipo de interacción entre el aprendiz y el 
entorno: aprendizaje supervisado y aprendizaje no supervisado (Casali et al., 2022; Shalev-
Shwartz & Ben-David, 2014; The MathWorks, 2016) (ver Figura 2). 
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Figura 2. Técnicas de machine learning 

 

Fuente: (The MathWorks, 2016). 

3.1.1.1 Aprendizaje supervisado 

El aprendizaje supervisado describe un escenario en el cual los ejemplos de 
entrenamiento contienen información adicional significativa (las etiquetas o labels) 
que está ausente en los ejemplos de prueba a los que se aplicará el modelo 
aprendido (Fernández-Delgado et al., 2014; Shalev-Shwartz & Ben-David, 2014). 
En este enfoque, el algoritmo utiliza un conjunto de entrenamiento de ejemplos con 
respuestas correctas predefinidas, donde cada instancia 𝑥𝑖 se presenta junto con su 
etiqueta correspondiente 𝑦𝑖, permitiendo al modelo aprender la relación entre las 
características de entrada y las salidas deseadas (Casali et al., 2022). En este 
contexto, puede conceptualizarse el entorno como un "profesor" que supervisa al 
aprendiz proporcionando la información adicional necesaria (Shalev-Shwartz & Ben-
David, 2014).  

Como ejemplo ilustrativo, considérese la tarea de detección de correos spam: el 
algoritmo recibe correos electrónicos de entrenamiento para los cuales se 
proporciona la etiqueta spam/no-spam, y con base en este entrenamiento, debe 
inferir una regla para etiquetar nuevos mensajes entrantes (Shalev-Shwartz & Ben-
David, 2014). La experiencia adquirida tiene como objetivo predecir la información 
faltante (las etiquetas) para los datos de prueba, permitiendo al modelo clasificar 
instancias no vistas durante el entrenamiento. Maya et al. (2024) señalan que, en 
modelos supervisados, el entrenamiento se basa en ejemplos presentados por el 
usuario (datos etiquetados), lo que constituye una diferencia fundamental con 
respecto a enfoques no supervisados. 
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3.1.1.2 Ventajas y limitaciones del aprendizaje supervisado 

El aprendizaje supervisado presenta como principal ventaja un objetivo claramente 
definido: aprender un clasificador que prediga las etiquetas de ejemplos futuros con 
la mayor precisión posible (Shalev-Shwartz & Ben-David, 2014). Además, un 
aprendiz supervisado puede estimar el éxito o riesgo de sus hipótesis utilizando los 
datos de entrenamiento etiquetados mediante el cálculo de la pérdida empírica, 
proporcionando un mecanismo directo de evaluación del desempeño del modelo 
(Shalev-Shwartz & Ben-David, 2014; The MathWorks, 2016). Sin embargo, la 
principal limitación del aprendizaje supervisado radica en la necesidad de contar con 
datos etiquetados para el entrenamiento. La obtención de estas etiquetas 
frecuentemente requiere intervención humana experta, lo cual puede resultar 
costoso, consumir tiempo considerable, y en algunos casos ser prácticamente 
inviable para conjuntos de datos de gran escala (Maya et al., 2024). Esta 
dependencia de datos etiquetados representa una restricción significativa que 
puede limitar la aplicabilidad del enfoque supervisado en ciertos contextos. 

3.1.1.3 Aprendizaje no supervisado 

En contraste, el aprendizaje no supervisado opera sobre datos sin etiquetas, donde 
las respuestas correctas no están disponibles durante el proceso de entrenamiento 
(Casali et al., 2022). En este paradigma, no existe distinción entre datos de 
entrenamiento y datos de prueba; en su lugar, el aprendiz procesa datos de entrada 
con el objetivo de generar algún tipo de resumen o versión comprimida de esos 
datos (Shalev-Shwartz & Ben-David, 2014). Maya et al. (2024) explican que los 
modelos no supervisados aprenden de los patrones intrínsecos de datos no 
etiquetados, utilizando la estructura misma de los datos para generar predicciones. 
En lugar de predecir etiquetas específicas, el objetivo es organizar los datos de 
manera significativa, siendo el clustering o agrupamiento una tarea típica de este 
enfoque (Shalev-Shwartz & Ben-David, 2014) Como ejemplo, en la tarea de 
detección de anomalías, el algoritmo recibe únicamente un gran volumen de 
mensajes de correo electrónico sin etiquetas, y su tarea consiste en detectar 
mensajes "inusuales" basándose en los patrones encontrados en los datos (Shalev-
Shwartz & Ben-David, 2014). Los enfoques no supervisados se emplean 
comúnmente para clustering, reducción de dimensionalidad y estimación de 
densidad (Maya et al., 2024).  

3.1.1.4 Ventajas y limitaciones del aprendizaje no supervisado 

La ventaja fundamental del aprendizaje no supervisado es que no requiere datos 
etiquetados, eliminando así la necesidad de un proceso costoso de etiquetado 
manual (Shalev-Shwartz & Ben-David, 2014). Esto lo hace particularmente útil para 
tareas de exploración de datos donde el objetivo es descubrir estructura o patrones 
inherentes sin conocimiento previo de las categorías existentes. 

No obstante, el aprendizaje no supervisado enfrenta desafíos importantes. La 
ausencia de "verdad absoluta" (ground truth) constituye un problema común: no 
existen etiquetas que predecir, y consecuentemente, no hay un procedimiento claro 
de evaluación del éxito del algoritmo (Shalev-Shwartz & Ben-David, 2014). Incluso 
con conocimiento completo de la distribución subyacente de los datos, no resulta 
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evidente cuál sería el clustering "correcto" o cómo evaluar un agrupamiento 
propuesto (Shalev-Shwartz & Ben-David, 2014). Esta ambigüedad en la definición 
de éxito representa una limitación fundamental que dificulta tanto el desarrollo como 
la evaluación de modelos no supervisados, ya que un mismo conjunto de datos 
puede admitir múltiples soluciones de clustering igualmente válidas, pero 
conceptualmente diferentes (Shalev-Shwartz & Ben-David, 2014).  

3.1.2 Principales algoritmos de clasificación 

Existe una amplia diversidad de algoritmos de clasificación disponibles en la literatura. 
Fernández-Delgado et al. (2014) realizaron una evaluación exhaustiva de 179 clasificadores 
provenientes de 17 familias diferentes, utilizando 121 conjuntos de datos de la base UCI. 
Las familias evaluadas incluyen: análisis discriminante, métodos bayesianos, redes 
neuronales, máquinas de vectores de soporte (SVM), árboles de decisión, clasificadores 
basados en reglas, boosting, bagging, stacking, random forests y otros ensambles, modelos 
lineales generalizados, vecinos más cercanos, regresión de mínimos cuadrados parciales 
y regresión de componentes principales, regresión logística y multinomial, y splines de 
regresión adaptativa múltiple (MARS). 

En aplicaciones prácticas, Casali et al. (2022) identificaron que los algoritmos supervisados 
más frecuentemente utilizados en análisis urbanos son: redes neuronales (NN), Random 
Forests (RF), máquinas de vectores de soporte (SVM), árboles de decisión con gradient 
boosting (GBDT), árboles de decisión (DT), K-vecinos más cercanos (KNN) y regresión 
logística. Entre estos, los resultados de Fernández-Delgado et al. (2014) demuestran que 
Random Forest es la mejor familia de clasificadores, con 3 de los 5 mejores clasificadores 
pertenecientes a esta familia. El mejor clasificador Random Forest alcanza 94.1% de la 
precisión máxima, superando el 90% en el 84.3% de los conjuntos de datos evaluados. Le 
sigue el SVM con kernel gaussiano implementado en LibSVM con 92.3% de la precisión 
máxima, aunque la diferencia no es estadísticamente significativa. Otros modelos 
destacados incluyen SVM con kernels gaussiano y polinomial, extreme learning machine 
con kernel gaussiano, C5.0 y avNNet (comité de perceptrones multicapa). La familia SVM 
posiciona 4 clasificadores en el top-10, mientras que redes neuronales y ensambles de 
boosting colocan 5 y 3 miembros respectivamente en el top-20 (Fernández-Delgado et al., 
2014) 

3.1.3 Random Forest 

Random Forest (RF) es un algoritmo de aprendizaje por ensamble (ensemble learning) 
introducido por Breiman (2001) que ha alcanzado reconocimiento como uno de los métodos 
de clasificación y regresión más efectivos en el aprendizaje automático supervisado 
(Fernández-Delgado et al., 2014). Este algoritmo constituye una extensión del método de 
bagging (bootstrap aggregating) aplicado a árboles de decisión (Breiman, 2001), donde 
múltiples árboles individuales son entrenados de manera independiente sobre submuestras 
bootstrap del conjunto de datos original, y sus predicciones son posteriormente agregadas 
mediante votación mayoritaria en clasificación o promediación en regresión (Mansour & 
Schain, 2001). La principal innovación de Random Forest radica en la introducción de una 
fuente adicional de aleatoriedad durante la construcción de cada árbol: en cada nodo del 
árbol, en lugar de considerar todas las variables predictoras disponibles para determinar la 
mejor división, el algoritmo selecciona aleatoriamente un subconjunto de variables 
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candidatas (Breiman, 2001), lo que incrementa la diversidad entre los árboles del ensamble 
y reduce la correlación entre sus predicciones (Shalev-Shwartz & Ben-David, 2014). 

3.1.3.1 Fundamentos: Árboles de Decisión como Clasificadores Base 

Los árboles de decisión constituyen el componente fundamental sobre el cual se 
construye Random Forest (Shalev-Shwartz & Ben-David, 2014). Un árbol de 
decisión es un modelo de predicción representado por una estructura de árbol (ver 
figura 3) donde cada nodo interno corresponde a una prueba sobre una variable de 
entrada, cada rama representa el resultado de dicha prueba, y cada nodo hoja 
(terminal) contiene una etiqueta de clase o un valor de predicción (Shalev-Shwartz 
& Ben-David, 2014). Formalmente, un árbol de decisión implementa una función 
predictora h que particiona recursivamente el espacio de características X mediante 
una serie de reglas de decisión binarias. Para variables continuas y categóricas, 
estas reglas tienen la forma: 

Regla de decisión para variables continuas: 

1 si 𝑥𝑖 < θ 

0 en caso contrario 

Regla de decisión para variables categóricas: 

1 si 𝑥𝑖 = v 

0 en caso contrario 

donde 𝑥𝑖 representa la i-ésima característica y θ o v son umbrales o valores 
específicos determinados durante el entrenamiento (Shalev-Shwartz & Ben-David, 
2014). 

Figura 3. Esquema árbol de decisión 

 

Fuente: (Shalev-Shwartz & Ben-David, 2014). 
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La construcción de un árbol de decisión sigue un enfoque voraz (greedy) donde, 
partiendo de un nodo raíz que contiene todo el conjunto de entrenamiento, se 
selecciona iterativamente la variable y el punto de división que optimizan localmente 
algún criterio de calidad, subdividiendo progresivamente los datos hasta alcanzar 
un criterio de parada (Mansour & Schain, 2001). Entre los algoritmos más conocidos 
para el crecimiento de árboles se encuentran ID3 (Iterative Dichotomizer 3) 
desarrollado por Quinlan (1993) y CART (Classification and Regression Trees) 
propuesto por Breiman (2001). El algoritmo ID3 construye el árbol mediante 
llamadas recursivas donde en cada nodo se calcula una medida de ganancia (Gain) 
para todas las variables disponibles, seleccionando aquella que maximiza dicha 
ganancia (Quinlan, 1993). Por su parte, el algoritmo CART utiliza divisiones binarias 
y emplea criterios como el índice de Gini para problemas de clasificación (Breiman, 
2001).  

3.1.3.2 Criterios de División en Árboles de Decisión 

La selección de la variable y punto de división óptimos en cada nodo del árbol se 
fundamenta en la evaluación de diferentes medidas de ganancia, las cuales 
cuantifican la reducción en impureza o incertidumbre lograda al particionar el 
conjunto de datos (Probst et al., 2019). Las tres medidas más utilizadas en la 
literatura son el error de entrenamiento, la ganancia de información basada en 
entropía, y el índice de Gini (Mansour & Schain, 2001; Shalev-Shwartz & Ben-David, 
2014). Para un conjunto de entrenamiento S y una variable predictora i, la ganancia 
se define como la diferencia entre la impureza antes y después de la división. 

3.1.3.2.1 Criterio 1: Error de Entrenamiento 

La medida más simple es la reducción en error de entrenamiento, donde la función 
de costo se define como (Chen & Guestrin, 2016; Shalev-Shwartz & Ben-David, 
2014): 

𝐶(𝑎)  =  𝑚𝑖𝑛{𝑎, 1 − 𝑎} 

El error de entrenamiento antes de dividir según la variable i es 𝐶(𝑃𝑆[𝑦 = 1]), y 
después de la división es: 

𝑃𝑆[𝑥𝑖 = 1]  ·  𝐶(𝑃𝑆[𝑦 = 1|𝑥𝑖 = 1])  +  𝑃𝑆[𝑥𝑖 = 0]  ·  𝐶(𝑃𝑆[𝑦 = 1|𝑥𝑖 = 0]) 

donde 𝑃𝑆[·] denota la probabilidad empírica sobre S. Por consiguiente, la ganancia 
basada en error de entrenamiento se expresa como: 

𝐺𝑎𝑖𝑛(𝑆, 𝑖)  =  𝐶(𝑃𝑆[𝑦 = 1])  − [𝑃𝑆[𝑥𝑖 = 1]  ·  𝐶(𝑃𝑆[𝑦 = 1|𝑥𝑖 = 1])  +  𝑃𝑆[𝑥𝑖
= 0]  ·  𝐶(𝑃𝑆[𝑦 = 1|𝑥𝑖 = 0])] 

3.1.3.2.2 Criterio 2: Ganancia de Información (Information Gain) 

La ganancia de información, utilizada en los algoritmos ID3 y C4.5 de Quinlan 
(1993), se basa en la diferencia entre la entropía de las etiquetas antes y después 
de la división, reemplazando 𝐶(𝑎) en la expresión anterior por la función de entropía 
(Shalev-Shwartz & Ben-David, 2014): 
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𝐶(𝑎)  =  −𝑎 · 𝑙𝑜𝑔(𝑎)  −  (1 − 𝑎) · 𝑙𝑜𝑔(1 − 𝑎) 

Esta medida cuantifica la reducción en la incertidumbre sobre la clase de las 
instancias resultante de conocer el valor de la variable predictora i (Quinlan, 1993). 
La función de entropía alcanza su máximo cuando 𝑎 =  0.5 (máxima incertidumbre) 

y su mínimo cuando 𝑎 =  0  o  𝑎 =  1 (certeza completa). 

3.1.3.2.3 Criterio 3: Índice de Gini 

El índice de Gini, empleado por el algoritmo CART de (Breiman, 2001), define la 
función de costo como: 

𝐶(𝑎)  =  2𝑎(1 − 𝑎) 

Tanto la ganancia de información como el índice de Gini son cotas superiores suaves 
y cóncavas del error de entrenamiento (Shalev-Shwartz & Ben-David, 2014), 
propiedades que resultan ventajosas en diversas situaciones, particularmente en 
contextos donde la diferenciabilidad y la convexidad facilitan la optimización 
(Mansour & Schain, 2001). No obstante, Strobl et al. (2008) han demostrado que el 
índice de Gini presenta un sesgo hacia variables con mayor número de categorías 
o escalas de medición continuas. 

3.1.3.3 Construcción del Ensemble mediante Bagging y Selección Aleatoria de 

Variables 

Random Forest construye un ensamble de árboles de decisión mediante un 
procedimiento que combina dos fuentes principales de aleatoriedad: el muestreo 
bootstrap de las instancias de entrenamiento y la selección aleatoria de 
subconjuntos de variables en cada división (Breiman, 2001; Chen & Guestrin, 2016). 
Formalmente, dado un conjunto de entrenamiento: 

𝑆 =  {(𝑥₁, 𝑦₁), (𝑥₂, 𝑦₂), . . . , (𝑥𝑚, 𝑦𝑚)} 

Donde: 

• Xi ∈ ℝᵈ representa el vector de características de la instancia i 

• Yi representa la etiqueta correspondiente 

• m es el tamaño del conjunto de entrenamiento 

• d es el número de variables predictoras 

Random Forest genera T árboles de decisión {ℎ₁, ℎ₂, . . . , ℎ𝑇} (Shalev-Shwartz & Ben-
David, 2014), donde cada árbol hT se construye mediante el siguiente procedimiento 
de dos pasos: 

3.1.3.3.1 Paso 1: Muestreo Bootstrap 

Se genera una submuestra bootstrap 𝑆′𝑡 de tamaño 𝑚′ mediante muestreo con 
reemplazo de S usando la distribución uniforme (Breiman, 2001): 
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𝑆′𝑡 =  𝑚𝑢𝑒𝑠𝑡𝑟𝑎 𝑑𝑒 𝑡𝑎𝑚𝑎ñ𝑜 𝑚′ 𝑒𝑥𝑡𝑟𝑎í𝑑𝑎 𝑐𝑜𝑛 𝑟𝑒𝑒𝑚𝑝𝑙𝑎𝑧𝑜 𝑑𝑒 𝑆 

Esto significa que algunas instancias originales pueden aparecer múltiples veces en 
𝑆′𝑡 mientras otras pueden no aparecer en absoluto. Las instancias no seleccionadas 
en este proceso, denominadas observaciones out-of-bag (OOB), constituyen 
aproximadamente el 36.8% de los datos originales y desempeñan un papel 
importante en la evaluación del modelo sin requerir un conjunto de validación 
adicional (Breiman, 2001). 

3.1.3.3.2 Paso 2: Selección Aleatoria de Variables en Cada Nodo 

Durante el crecimiento de cada árbol sobre la muestra bootstrap 𝑆′𝑡, en cada etapa 
de división se introduce una segunda fuente de aleatoriedad (Breiman, 2001): en 
lugar de evaluar todas las d variables disponibles para determinar la mejor división, 
el algoritmo selecciona aleatoriamente un subconjunto: 

𝐼𝑡 ⊆  {1, 2, . . . , 𝑑} 

de tamaño k (comúnmente denominado mtry en las implementaciones), y la variable 
de división se elige únicamente de entre este subconjunto restringido maximizando 
la ganancia: 

𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ó𝑝𝑡𝑖𝑚𝑎 =  𝑎𝑟𝑔𝑚𝑎𝑥 𝐺𝑎𝑖𝑛(𝑆′𝑡, 𝑖) 𝑝𝑎𝑟𝑎 𝑖 ∈  𝐼𝑡 

Este procedimiento se repite de manera independiente en cada nodo del árbol, 
generando una nueva selección aleatoria de variables candidatas (Breiman, 2001). 
Estas dos fuentes de aleatoriedad (muestreo bootstrap y selección aleatoria de 
variables) trabajan conjuntamente para reducir la correlación entre los árboles 
individuales del ensamble (Strobl et al., 2008). Intuitivamente, si k es pequeño en 
comparación con d, esta restricción puede prevenir el sobreajuste al limitar la 
capacidad de cada árbol individual para memorizar completamente los datos de 
entrenamiento (Shalev-Shwartz & Ben-David, 2014) 

La fundamentación teórica de por qué Random Forest alcanza un desempeño 
superior al de los árboles individuales se encuentra en los principios del bagging y 
en la teoría de métodos de ensamble. El método bagging (bootstrap aggregating), 
introducido por Breiman (2001), aprovecha el hecho de que los árboles de decisión 
son clasificadores inestables pero que, en promedio, producen predicciones 
correctas. Mediante la combinación de predicciones de un conjunto diverso de 
árboles, bagging utiliza esta inestabilidad para reducir la varianza de la predicción 
sin incrementar sustancialmente el sesgo (Breiman, 2001). Los resultados teóricos 
de Peter Bühlmann (2002) demostraron que la mejora en la precisión de predicción 
de los ensambles se logra mediante el suavizado (smoothing) de las fronteras de 
decisión rígidas creadas por las divisiones en árboles de clasificación individuales, 
lo cual reduce efectivamente la varianza de la predicción. En Random Forest, la 
introducción de la selección aleatoria de variables en cada división genera aún 
mayor diversidad entre los árboles (Strobl et al., 2008), permitiendo que variables 
predictoras que de otro modo serían eclipsadas por competidores más fuertes 
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puedan entrar en el ensamble, revelando efectos de interacción que podrían 
haberse perdido (Strobl et al., 2008). 

 

3.1.3.4 Mecanismo de Predicción 

La predicción final de Random Forest para una nueva instancia x se obtiene 

mediante la agregación de las predicciones individuales de todos los árboles del 

ensamble (Breiman, 2001). 

3.1.3.4.1 Para Problemas de Clasificación: 

Se utiliza votación por mayoría: cada árbol ht(x) emite un voto para una clase 
específica, y la clase con el mayor número de votos es seleccionada como la 
predicción final (Svetnik et al., 2003). Formalmente: 

ℎ𝑅𝐹(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐 ∈ 𝑌 ∑ 1[ℎ𝑡(𝑥) = 𝑐]

𝑇

𝑡=1

 

Donde Y representa el conjunto de posibles clases T es el número total de árboles 
en el bosque  1[ℎ𝑡(𝑥)  =  𝑐] es la función indicadora que vale 1 si el árbol t predice 
la clase c, y 0 en caso contrario. 

3.1.3.4.2 Para Problemas de Regresión: 

La predicción se obtiene promediando las predicciones numéricas de todos los 
árboles (Krstajic et al., 2014): 

ℎ𝑅𝐹(𝑥) =
1

𝑇
∑ ℎ𝑡(𝑥)

𝑇

𝑡=1

 

donde ht(x) es el valor numérico predicho por el árbol t para la instancia x. Este 
proceso de agregación constituye la esencia del método de ensamble (Chen & 
Guestrin, 2016), permitiendo que Random Forest aproveche la sabiduría colectiva 
de múltiples árboles para producir predicciones más robustas y precisas que 
cualquier árbol individual (Breiman, 2001). 

3.1.3.5 Hiperparámetros y su Influencia en el Desempeño 

El rendimiento de Random Forest está influenciado por diversos hiperparámetros 
que controlan tanto la estructura de los árboles individuales como la configuración 
global del ensamble (Probst et al., 2019). Los hiperparámetros principales incluyen: 

(1) mtry (k): El número de variables candidatas consideradas en cada división, cuyo 
valor óptimo depende críticamente del número de variables relevantes para el 
problema (Probst et al., 2019). 
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(2) T (número de árboles): El número de árboles en el bosque, donde valores más 
altos generalmente conducen a mejor desempeño y mayor estabilidad en las 
medidas de importancia de variables, aunque con rendimientos decrecientes 
más allá de cierto punto (Breiman, 2001; Probst et al., 2019). 

(3) sample_size: El tamaño de muestra para cada árbol, típicamente igual al 
tamaño del conjunto de entrenamiento n, aunque puede modificarse (Probst et 
al., 2019). 

(4) replacement: El esquema de muestreo, que especifica si las muestras 
bootstrap se extraen con o sin reemplazo (Breiman, 2001). 

(5) min_samples_split y min_samples_leaf: El tamaño mínimo de nodo, que 
controla cuándo se detiene la subdivisión de un nodo. 

(6) max_depth: La profundidad máxima del árbol, que limita el crecimiento vertical 
del árbol. 

(7) splitting_rule: El criterio de división, que puede ser Gini (Breiman, 2001), 
entropía (Quinlan, 1993), o variantes condicionales. 

El hiperparámetro mtry es particularmente crítico, ya que controla directamente el 
trade-off entre la fortaleza individual de los árboles y su correlación mutua (Probst 
et al., 2019). Según (Probst et al., 2019), "la aleatoriedad utilizada en la construcción 
de árboles debe apuntar a baja correlación ρ mientras mantiene fortaleza 
razonable". Valores bajos de mtry producen árboles más diversos y menos 
correlacionados, mejorando la estabilidad al agregar (Probst et al., 2019), y también 
permiten explotar mejor variables con efectos moderados que serían enmascaradas 
por variables con efectos fuertes si estas últimas siempre fueran candidatas para 
división (Strobl et al., 2008). Sin embargo, valores muy bajos de mtry también 
pueden resultar en árboles individualmente débiles (Probst et al., 2019). Los valores 
típicos por defecto son: 

 
Para clasificación: 

𝑚𝑡𝑟𝑦 =  √𝑝 

Para regresión: 

𝑚𝑡𝑟𝑦 =  𝑝/3 

donde p es el número total de variables predictoras (Breiman, 2001), aunque estos 
valores deben considerarse como puntos de partida que pueden requerir ajuste 
según las características específicas de los datos (Probst et al., 2019). El ajuste de 
hiperparámetros (hyperparameter tuning) puede realizarse mediante estrategias 
como búsqueda en rejilla (grid search), búsqueda aleatoria (random search), o 
métodos más sofisticados como optimización bayesiana (Jun, 2021), utilizando las 
observaciones out-of-bag para evaluar el desempeño sin necesidad de un conjunto 
de validación separado (Mansour & Schain, 2001). 

3.1.3.6 Medidas de Importancia de Variables 

Random Forest proporciona medidas de importancia de variables que cuantifican la 
contribución relativa de cada variable predictora a la capacidad predictiva del 
modelo (Breiman, 2001; Strobl et al., 2008), siendo esta una de las características 
más valiosas del algoritmo para aplicaciones donde la interpretabilidad es 
importante. Existen dos medidas principales: 
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➢ Importancia Basada en Permutación (Permutation Importance): La importancia 
por permutación se calcula mediante el siguiente procedimiento (Breiman, 2001): 

Para cada árbol en el bosque y cada variable predictora j: 

• Se permutan aleatoriamente los valores de la variable j en las observaciones 
out-of-bag 

• Se calcula la diferencia en precisión de predicción antes y después de la 
permutación 

• Esta diferencia se promedia sobre todos los árboles 

Formalmente, la importancia por permutación de la variable j puede 
expresarse como: 

𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑖𝑎𝑃𝑒𝑟𝑚(𝑗) =
1

𝑇
 ∑[𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑂𝑂𝐵(𝑡)  −  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑂𝑂𝐵, 𝑝𝑒𝑟𝑚(𝑡, 𝑗)]

𝑇

𝑡=1

 

Donde: 

• T es el número de árboles 

• AccuracyOOB(t) es la precisión del árbol t evaluada en sus observaciones 
out-of-bag 

• AccuracyOOB, perm(t,j) es la precisión después de permutar la variable j 

Una disminución grande en precisión indica que la variable es importante para 
la predicción (Breiman, 2001; Strobl et al., 2008). 

➢ Importancia Basada en Gini (Mean Decrease Impurity): La importancia basada 
en Gini se calcula acumulando, para cada variable, la reducción total en impureza 
de Gini lograda por todas las divisiones que utilizan esa variable a lo largo de todos 
los árboles del bosque (Breiman, 2001). 

Para un árbol individual T, la importancia de la variable j se define como: 

𝐼²𝑗(𝑇)  =  ∑ 1[𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑒𝑛 𝑛𝑜𝑑𝑜 𝑛 =  𝑗]  ×  𝛥𝐼𝑚𝑝𝑢𝑟𝑒𝑧𝑎(𝑛)

𝑇

𝑛=1

 

Donde: 

• La suma se realiza sobre todos los nodos internos del árbol T 

• ΔImpureza(n) representa la reducción en impureza de Gini lograda en el 
nodo n 

La importancia final para Random Forest se obtiene promediando sobre todos 
los árboles (Mansour & Schain, 2001): 
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𝐼2𝑗 =
1

𝑀
 ∑ 𝐼²𝑗(𝑇𝑚)

𝑇

𝑚=1

  

Donde M es el número de árboles en el bosque. 

Los valores de importancia resultantes se estandarizan típicamente para que 
sumen 100%, permitiendo una interpretación relativa directa (Breiman, 2001). 
Sin embargo, la importancia basada en Gini presenta un sesgo conocido: tiende 
a favorecer variables con muchas categorías o con escalas de medición 
continuas sobre variables binarias (Strobl et al., 2008), y puede sobrestimar la 
importancia de variables correlacionadas (Strobl et al., 2008). Por esta razón, la 
importancia por permutación es generalmente preferida cuando se requiere una 
evaluación más fiable del impacto verdadero de cada variable, particularmente 
en presencia de variables predictoras correlacionadas (Strobl et al., 2008). 

3.1.4 Ventajas y Limitaciones de Random Forest 

Random Forest presenta numerosas ventajas que han contribuido a su amplia adopción en 
aplicaciones prácticas de aprendizaje automático (Fernández-Delgado et al., 2014). En 
primer lugar, el algoritmo es altamente efectivo para prevenir el sobreajuste: al obtener la 
predicción final agregada de múltiples árboles de decisión independientes, Random Forest 
reduce significativamente la varianza de un árbol individual, conduciendo a mejores 
predicciones sobre datos nuevos (Breiman, 2001). En segundo lugar, Random Forest 
exhibe notable flexibilidad, ya que no requiere preprocesamiento extensivo de datos como 
escalamiento de variables, transformaciones, o imputación elaborada de valores faltantes, 
y no asume ninguna forma funcional específica de la relación entre variables predictoras y 
respuesta, a diferencia de modelos paramétricos como la regresión lineal o logística (Jun, 
2021).  

En tercer lugar, el algoritmo es naturalmente robusto frente a variables irrelevantes y puede 
manejar efectivamente espacios de características de alta dimensionalidad (Breiman, 
2001). En cuarto lugar, Random Forest puede capturar relaciones no lineales complejas e 
interacciones entre variables sin necesidad de especificarlas explícitamente en el modelo 
(Chen & Guestrin, 2016). En quinto lugar, las observaciones out-of-bag proporcionan una 
estimación interna del error de generalización sin requerir un conjunto de validación 
separado, lo cual es computacionalmente eficiente (Breiman, 2001). Finalmente, 
Fernández-Delgado et al. (2014) demostraron empíricamente, mediante una evaluación 
exhaustiva de 179 clasificadores de 17 familias diferentes sobre 121 conjuntos de datos de 
la base UCI, que Random Forest es la mejor familia de clasificadores, con el mejor Random 
Forest alcanzando 94.1% de la precisión máxima y superando el 90% de precisión en el 
84.3% de los conjuntos de datos evaluados. 

No obstante, Random Forest también presenta limitaciones importantes que deben 
considerarse. La principal desventaja es su complejidad computacional: el entrenamiento 
de múltiples árboles de decisión completos requiere recursos computacionales 
considerables, especialmente con conjuntos de datos grandes y números elevados de 
árboles, aunque este costo puede mitigarse parcialmente mediante implementaciones 
paralelas dado que los árboles se entrenan independientemente (Breiman, 2001). 
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Adicionalmente, la interpretabilidad del modelo se ve significativamente reducida en 
comparación con un árbol de decisión individual: mientras que un solo árbol proporciona 
una representación visual clara y transparente de las reglas de decisión (Krstajic et al., 
2014), Random Forest constituye esencialmente una "caja negra" donde la lógica de 
predicción resulta difícil de explicar a usuarios no técnicos, aunque las medidas de 
importancia de variables ofrecen cierta información sobre qué factores contribuyen más a 
las predicciones (Breiman, 2001; Probst et al., 2019). Finalmente, en comparación con 
algunos métodos de boosting como Gradient Boosting Decision Trees, Random Forest 
puede alcanzar precisión predictiva ligeramente inferior en ciertos conjuntos de datos, 
particularmente aquellos donde las señales predictivas son débiles o donde existe alta 
complejidad en las interacciones entre variables (Krstajic et al., 2014; Lundberg & Lee, 
2017). 

4. METODOLOGÍA 

En este apartado se describe el proceso de compilación, depuración y transformación de 
los datos utilizados en el análisis. Se detallan las variables seleccionadas para la 
construcción del modelo y los patrones urbanos observados entre los años 2005 y 2018. 
Asimismo, se explica la creación de la variable dependiente correspondiente al fenómeno 
de gentrificación, la cual constituye el eje central del modelo de Random Forest. 
Posteriormente, se presentan los criterios socioeconómicos empleados para clasificar los 
barrios o vecindarios según su condición de gentrificados o no gentrificados. Finalmente, 
se expone la estimación del modelo de Random Forest, junto con sus indicadores de 
rendimiento y precisión, que permiten evaluar la capacidad predictiva del modelo y la 
validez de los resultados obtenidos. 

4.1 Recopilación de datos 

Las bases de datos utilizadas para este estudio parten de dos fuentes principales: datos 
censados del Departamento Administrativo Nacional de Estadística (DANE) y la Secretaría 
de Hacienda Distrital, para los años comprendidos durante el 2005 y 2018. Utilizando 
información socioeconómica, sociodemográfica y valor promedio del suelo por metro 
cuadrado. 

4.1.1 DANE 

Variables sociodemográficas y socioeconómicas 

• Años promedio de escolaridad 

• Número de viviendas ocupadas 

• Índice de envejecimiento 

• Población total  

4.1.2 Secretaría de Hacienda Distrital 

• Precio por m2 
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Los datos son extraídos por medio de REDATAM (Recuperación de Datos para Áreas 
Pequeñas), sistema de difusión de datos censales y estadísticos desarrollados por la 
CEPAL, el cual utiliza el DANE para realizar consultas y análisis de datos de gran volumen, 
y la información de valor del suelo por m2 fue proporcionada por la Secretaría de Hacienda 
Distrital, ambas a nivel manzana, que luego fueron colapsadas a nivel de los barrios de 
Cartagena.  

4.2 Estructuración y transformación de datos 

Con el objetivo de identificar los cambios urbanos y los patrones de transformación en los 
barrios, se calcularon primero las proporciones de viviendas ocupadas en relación con la 
población total de cada periodo analizado. Posteriormente, se estimó el índice de 
envejecimiento, definido como la razón entre la población de personas mayores de 60 años 
y la población joven (de 0 a 14 años), multiplicada por 100.  

Un valor elevado de este índice indica una población envejecida, mientras que valores bajos 
reflejan una estructura poblacional más joven. Por su parte, el promedio de años escolares 
y el precio promedio por metro cuadrado se mantuvieron en términos absolutos, al 
considerarse variables de referencia estructural. Finalmente, se calcularon las variaciones 
intertemporales de cada indicador con el fin de construir una base de datos que permitiera 
evaluar la dirección y magnitud de los cambios ocurridos en los barrios a lo largo del periodo 
de estudio. 

4.3 Creación del indicador de gentrificación 

Se utilizaron los siguientes criterios para identificar si el área censada había experimentado 
un proceso de gentrificación: 

a) La variación de la proporción de la vivienda ocupada es mayor al promedio que 
el de la ciudad 

b) La variación de años promedios de escolaridad es mayor al promedio que el de 
la ciudad 

c) La variación del precio del suelo por m2 es mayor al promedio que el de la ciudad 
d) El índice de envejecimiento es menor que el percentil 25 (cuartil inferior) que el 

índice de envejecimiento de la ciudad 

Tomando como referencia los criterios propuestos por Chapple et al. (2017) para identificar 
los vecindarios gentrificados o en proceso de gentrificación, este estudio adapta dicha 
metodología al contexto urbano de Cartagena, Colombia. En la Tabla 1 se presentan los 
criterios discutidos. 
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Tabla 1. Criterios para clasificar barrios como “vulnerables” o “gentrificados/en proceso de 
gentrificación” 

Clasificación Indicadores 

Vecindario vulnerable a la gentrificación 
(Año base) – Cumple a menos 3 indicadores 

% de hogares de bajos ingresos (menos del 
80% del ingreso mediano del condado) 

Por encima de la mediana del condado 

% con educación universitaria o superior Por debajo del percentil 40 del condado 
% de arrendatarios Por encima de la mediana del condado 
% de población blanca no hispana Por debajo de la mediana del condado 

Barrio gentrificado o en proceso de gentrificación 
 (cambio Año base–Año final) 

% con educación universitaria o superior Por encima del promedio del condado 
Ingreso mediano del hogar Por encima del promedio del condado 
% de población blanca no hispana Por encima del promedio del condado 
Alquiler bruto mediano Por encima del promedio del condado 

Fuente: Adaptado de Loukaitou-Sideris et al. (2019). 

Si bien el modelo original fue diseñado para la ciudad de Los Ángeles, Estados Unidos 
(donde se dispone de variables como la proporción de población blanca no hispana y el 
ingreso de los hogares), la realidad urbana de Cartagena presenta dinámicas distintas, 
marcadas por procesos de turistificación y la llegada de nuevos inversores inmobiliarios que 
inciden directamente en la especulación del suelo.  

Dadas las limitaciones de la información censal en Colombia, particularmente la ausencia 
de datos sobre ingresos de los hogares, la cual no se incluye en el modelo, además, se 
reemplazó la variable de educación superior utilizada en el modelo original por el índice de 
envejecimiento, considerando que en muchos barrios el desplazamiento no está asociado 
a un mayor acceso educativo, sino a transformaciones derivadas del mercado inmobiliario 
y turístico. En consecuencia, el modelo se ajustó empleando las variables disponibles para 
el contexto local, de modo que un barrio se clasificó como gentrificado cuando presentaba 
cambios significativos en al menos dos de los criterios seleccionados.  

4.4 Perfil de los barrios gentrificados 

Esta sección examina los patrones de gentrificación en la ciudad de Cartagena, mediante 
las variables seleccionadas y el cambio experimentado durante el periodo de 2005-2018, 
mediante mapas (ver Figura 4, Figura 5, Figura 6 y Figura 7) y así destacar los barrios 
con mayores incidencias en el marco del cambio urbano. 
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Figura 4. Cambio en el promedio de año escolar 

 

Fuente: elaboración de los autores con base en DANE. 

En 2005, los barrios con mayor promedio de años de escolaridad fueron La Matuna, Santa 
Mónica, Manga, San Pedro y El Cabrero, con cerca de 18 años en promedio. Para 2018, el 
panorama cambió, destacándose Chambacú (22 años), El Cabrero (20), Castillo Grande 
(19), Marbella (19) y Bocagrande (19) como los sectores con niveles educativos más altos. 
Los mayores incrementos en escolaridad se registraron en Chambacú (24%), seguido de 
El Laguito (15%), Castillo Grande (15%), Villa Hermosa (14%) y El Cabrero (13%) (ver 
Figura 4). En total, alrededor del 50% de los barrios (73) mostraron un aumento superior al 
promedio general, evidenciando un avance significativo en el nivel educativo de la población 
en buena parte del territorio. 
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Figura 5. Cambio en Proporción de viviendas ocupadas 

 

Fuente: elaboración de los autores con base en DANE. 
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Figura 6. Cambio en el Índice de envejecimiento 

 

Fuente: elaboración de los autores con base en DANE. 

En 2005, los cinco barrios con mayor proporción de viviendas ocupadas (ver Figura 5) eran 
Rubí (29%), El Laguito (28%), Armenia (27%), Chambacú (26%) y Pie del Cerro (26%). 
Para 2018, siendo el vecindario con mayor ocupación de viviendas Chambacú (100%), 
Centro (48%), La Matuna (48%), El Cabrero (43%) y El Laguito (43%). Se presentó mayor 
crecimiento en Chambacú, Centro, Santa María, Bocagrande y El Cabrero. El 29% (43) de 
los barrios obtuvo una variación mayor al promedio de la muestra. Se observa una mayor 
proporción de viviendas ocupadas en general, y principalmente en la zona norte y en el 
centro de la ciudad. Para el caso del índice de envejecimiento (ver Figura 6) algunos de los 
barrios se mantuvieron en los mismos umbrales, pero para la zona norte y el centro de la 
ciudad aumentó los valores del indicador. 

En cuanto a la variación de precios por m2 (ver Figura 7), los mayores crecimientos 
porcentuales se registraron en Villa Estrella, Providencia, Chipre, El Carmen y La 
Esmeralda II, barrios tradicionalmente residenciales que comienzan a mostrar signos de 
transformación urbana. En total, el 26% de los barrios (38 en total) presentaron un aumento 
en el valor del suelo por encima del promedio de la muestra, concentrándose principalmente 
en el norte y centro de la ciudad, áreas que reflejan una mayor presión inmobiliaria y 
procesos de revalorización más intensos. 
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Figura 7. Cambio en el Precio por m2 

 

Fuente: elaboración de los autores con base en DANE. 

4.5 La estimación del modelo Random Forest 

En este apartado se muestra el modelo de Random Forrest, su hiperparametrización, los 
indicadores de calidad del modelo, variables de importancia, y finalmente los resultados del 
modelo. La Tabla 2 muestra los umbrales del clúster considerado, mientras que la Figura 
8 muestra la matriz de confusión resultante del modelo:  

Tabla 2.Umbrales del clúster 

Vecindarios Número 

Gentrificado (Prob>=51) 38 

Gentrificable (0.10<=Prob<0.51) 27 

No Gentricado (Prob<0.10) 74 

Fuente: elaboración de los autores. 
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Figura 8. Matriz de Confusión.  

 

Fuente: Elaboración de los autores. 

Una matriz de confusión tiene los siguientes elementos para evaluar que tan acertado es 
un modelo:  

• Verdadero Positivo (TP): El modelo predice positivo y la etiqueta real es positiva. 

• Falso Negativo (FN): El modelo predice negativo, pero la etiqueta real es positiva. 

• Falso Positivo (FP): El modelo predice positivo, pero la etiqueta real es negativa. 

• Verdadero Negativo (TN): El modelo predice negativo y la etiqueta real es 
negativa. 

Se puede observar que el error del modelo es bajo, principalmente por los Falso negativos 
y Falsos positivos suman solo 3 observaciones en los datos de testeo. Por otra parte, la  
Figura 9 presenta la importancia de las variables de modelo RF, demostrando que la 
variable más relevante que seleccionaron los árboles de decisión es la proporción de 
viviendas ocupadas escaladas. En este caso no se tiene certeza que dicha variable esta 
discriminada por residentes nuevos o viejos, pero presenta incidencia en la construcción de 
la variable de “Gentrificación” y en la predicción de los resultados.  
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Figura 9. Variables de importancia del RF 

 

Fuente: Elaboración de los autores. 

En la Tabla 3 se presentan los hiperparámetros utilizados para optimizar el modelo de 

Random Forest mediante RandomizedSearchCV, por su parte la Tabla 4 muestra los 

parámetros de calidad del modelo escogido.  

Tabla 3. Hiperparámetros del RF 

Hiperparámetro Valor 

max_depth 6 

min_samples_leaf 4 

min_samples_split 9 

n_estimators 230 

Fuente: Elaboración de los autores. 
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Tabla 4. Calidad del Modelo 

Indicador Puntaje 

Accuracy 0.9142 

F1-Score 0.842 

Precision 0.88 

Recall 0.8 

Fuente: Elaboración de los autores. 

La técnica RandomizedSearchCV (ver Tabla 3), contribuye a reducir el sobreajuste del 
modelo al explorar diferentes combinaciones de parámetros de forma aleatoria. La 
selección del mejor conjunto de hiperparámetros se realiza a través de validación cruzada 
con k-folds, empleando 5 particiones, con el fin de maximizar el rendimiento del modelo. Se 
utiliza la métrica accuracy como medida de desempeño y se ejecuta el proceso con 
RandomizedSearchCV de la librería scikit-learn, que identifica automáticamente los 
parámetros óptimos dentro del espacio de búsqueda definido.  En el modelo de Random 
Forest, los hiperparámetros seleccionados cumplen un papel crucial en el control de la 
complejidad y la capacidad de generalización. El parámetro max_depth = 6 limita la 
profundidad máxima de los árboles, evitando que crezcan demasiado y se sobreajusten a 
los datos. Por su parte, min_samples_leaf = 4 establece que cada hoja debe contener al 
menos cuatro muestras, lo que reduce la creación de nodos terminales basados en muy 
pocos datos y mejora la estabilidad del modelo. El hiperparámetro min_samples_split = 9 
exige un mínimo de nueve observaciones para dividir un nodo, previniendo particiones 
innecesarias y disminuyendo la variabilidad. Finalmente, n_estimators = 230 define el 
número de árboles que conforman el bosque, aumentando la precisión y la robustez del 
modelo al promediar más predicciones, aunque con un mayor costo computacional. En 
conjunto, estos valores permiten obtener un Random Forest equilibrado, menos propenso 
al sobreajuste y con mejor capacidad predictiva. 

El desempeño predictivo del modelo presentado en la Tabla 4 valida la robustez del enfoque 

metodológico adoptado. Con un accuracy de 0.9142 (91.4%), el modelo demuestra alta 

capacidad para clasificar correctamente los barrios en sus categorías correspondientes. La 

precisión de 0.88 indica que el 88% de los barrios clasificados como gentrificados 

efectivamente presentan características consistentes con este proceso, mientras que el 

recall de 0.8 revela que el modelo identifica correctamente el 80% de los barrios que 

realmente experimentaron gentrificación. El F1-score de 0.842 representa un equilibrio 

robusto entre precisión y recall, confirmando que el modelo no sacrifica la capacidad de 

detección por reducir falsos positivos, ni viceversa. Estos resultados son consistentes con 

las métricas de la matriz de confusión presentada en la Figura 8 donde se observó que los 

errores de clasificación (falsos negativos y falsos positivos) sumaron únicamente 3 

observaciones en el conjunto de testeo, correspondiendo a una tasa de error del 8.6%. Este 

nivel de precisión predictiva es comparable, e incluso superior, a los reportados en estudios 

internacionales similares: el modelo desarrollado por Reades et al. (2019) para Londres 

alcanzó un AUC-ROC de 0.747, mientras que el estudio de gentrificación en Washington 

D.C. reportó un accuracy de 0.83. 
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4.6 Análisis de árboles de decisión individuales 

Para comprender en profundidad el funcionamiento del modelo Random Forest y las reglas 
de decisión aprendidas, se analizaron tres árboles individuales representativos del 
ensamble (ver Figura 10, Figura 11 y Figura 12). Los árboles analizados presentan 
estructuras diversas, característica fundamental del método Random Forest que contribuye 
a reducir el sobreajuste y mejorar la capacidad de generalización del modelo, de esta forma, 
cada árbol muestra cómo el algoritmo divide recursivamente el espacio de características 
para clasificar los barrios en gentrificados y no gentrificados.  

El primer árbol analizado (Figura 10) utiliza la variable de viviendas ocupadas como nodo 
raíz, identificando que valores superiores a 0.319 en la escala normalizada clasifican 
directamente el 16.7% de los barrios como gentrificados con un 100% de certeza. Este 
resultado sugiere que una alta ocupación de viviendas constituye un indicador muy robusto 
de gentrificación, reflejando la presión inmobiliaria característica de este fenómeno urbano. 
Para el 83.3% de los barrios restantes, que presentan niveles menores de ocupación, el 
árbol evalúa el índice de vejez como segunda variable de división, requiriendo la 
combinación de múltiples características para determinar la clasificación final.  

Figura 10. Árbol de decisión 1 del modelo Random Forest 

 

Fuente: Elaboración de los autores. 
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Figura 11. Árbol de decisión 2 del modelo Random Forest 

 

Fuente: Elaboración de los autores. 

 

Figura 12. Árbol de decisión 3 del modelo Random Forest 

 

Fuente: Elaboración de los autores. 
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En contraste con el primer árbol, el segundo y tercer árbol (Figura 11 y Figura 12) utilizan 
el índice de vejez como variable raíz, aunque con umbrales diferentes de -0.433 y -0.499 
respectivamente. Ambos árboles identifican que una población joven constituye el primer 
discriminador para predecir gentrificación, lo que refleja el rejuvenecimiento demográfico 
ampliamente documentado en procesos de transformación urbana. El segundo árbol 
clasifica el 7.8% de los barrios con población muy joven y precios del suelo estables o 
crecientes como gentrificados, mientras que el 51.6% de los barrios con población 
envejecida y baja ocupación de viviendas son clasificados como no gentrificados. Por su 
parte, el tercer árbol presenta un umbral más estricto para el índice de vejez (-0.499 
comparado con -0.433), requiriendo una población significativamente más joven para iniciar 
la predicción de gentrificación.  

Esta estrategia más conservadora reduce los falsos positivos, clasificando un 13.4% de los 
barrios como gentrificados en lugar del 7.8% del segundo árbol. La diferencia en umbrales 
entre estos dos árboles ilustra cómo Random Forest genera diversidad en el ensamble, 
permitiendo que diferentes árboles capturen matices distintos del mismo fenómeno. 

El análisis comparativo de los tres árboles revela una jerarquía clara de variables 
predictoras que coincide con los principios teóricos de la gentrificación. El índice de vejez 
aparece en los tres árboles como variable de división, confirmando su papel como el 
predictor más importante del modelo; valores bajos del índice, indicando población joven, 
están consistentemente asociados con barrios gentrificados, mientras que valores altos, 
reflejando población envejecida, predicen barrios no gentrificados. Este hallazgo es 
coherente con la teoría de gentrificación que documenta el rejuvenecimiento demográfico 
como un marcador fundamental del proceso, donde nuevos residentes jóvenes de clase 
media-alta desplazan gradualmente a la población envejecida original. La variable de 
viviendas ocupadas también aparece en los tres árboles, aunque con comportamientos no 
lineales que dependen del contexto de otras variables. En algunos casos, una alta 
ocupación de viviendas indica gentrificación, particularmente cuando se combina con 
población joven, mientras que en otros contextos puede asociarse con barrios tradicionales 
no gentrificados caracterizados por alta densidad residencial histórica. Esta complejidad 
refleja las múltiples dinámicas del mercado inmobiliario cartagenero, donde tanto la 
gentrificación residencial como la conversión a alojamientos turísticos pueden incrementar 
la ocupación de viviendas. 

El precio del suelo aparece en dos de los tres árboles como variable complementaria que 
refina la clasificación en casos ambiguos. Su presencia es particularmente relevante 
cuando el índice de vejez y las viviendas ocupadas por sí solos no proporcionan señales 
suficientemente claras. Esto sugiere que la valorización del suelo, aunque importante, actúa 
más como un indicador secundario que confirma o matiza las señales demográficas e 
inmobiliarias primarias. Finalmente, la media de años escolares aparece solo en el primer 
árbol como variable de refinamiento, sugiriendo que, aunque el nivel educativo es relevante 
para caracterizar el perfil socioeconómico de los residentes, tiene menor poder predictivo 
en comparación con las variables demográficas e inmobiliarias. Esta jerarquía de 
importancia es consistente con estudios previos sobre gentrificación que priorizan el análisis 
de cambios demográficos y transformaciones del mercado de vivienda sobre indicadores 
educativos. 
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4.7 RESULTADOS DEL MODELO RANDOM FOREST 

La Figura 13  presenta los resultados consolidados del modelo, evidenciando la 

clasificación de los 139 barrios analizados en tres categorías principales según su 

probabilidad de gentrificación: barrios gentrificados, gentrificables y no gentrificados. 

Figura 13. Resultados del Modelo Random Forest 

 

Fuente: Elaboración de los autores. 
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Como se observa en la Tabla 2, el modelo clasificó 38 barrios (26% del total) como 

gentrificados, es decir, vecindarios con una probabilidad superior al 51% de haber 

experimentado procesos consolidados de transformación urbana asociados a 

gentrificación. Por otra parte, 27 barrios (18.5% del total) fueron clasificados como 

gentrificables, presentando probabilidades de gentrificación entre 0.10 y 0.51. La Tabla 5 y 

Tabla 6 muestran estos resultados a detalle.  

Tabla 5. Barrios clasificados como gentrificables por el modelo desarrollado. 

Barrio Cluster_gentrificacion 

ALAMEDA LA VICTORIA Gentrificable 

ALTOS DE SAN ISIDRO Gentrificable 

BELLAVISTA Gentrificable 

CAMILO TORRES Gentrificable 

CERRO DE LA POPA Gentrificable 

EL POZON Gentrificable 

JAIME PARDO LEAL Gentrificable 

JORGE ELIECER GAITAN Gentrificable 

LA CASTELLANA Gentrificable 

LA ESMERALDA I Gentrificable 

LA FLORIDA Gentrificable 

LAS DELICIAS Gentrificable 

LOS CERROS Gentrificable 

LOS JARDINES Gentrificable 

NAZARENO Gentrificable 

PABLO VI - I Gentrificable 

PEDRO SALAZAR Gentrificable 

PETARE Gentrificable 

PIE DE LA POPA Gentrificable 

POLICARPA Gentrificable 

RUBI Gentrificable 

SAN ANTONIO Gentrificable 

SAN BERNARDO Gentrificable 

TACARIGUA Gentrificable 

VILLA ESTRELLA Gentrificable 

VILLA HERMOSA Gentrificable 

VILLA ROSITA Gentrificable 

Fuente: Elaboración de los autores. 

La Tabla 5 detalla estos vecindarios clasificados como gentrificables, entre los que destacan 

El Pozón, Villa Estrella, Alameda la Victoria, y varios sectores de Olaya Herrera (Pablo VI-

I, Pedro Salazar, Jaime Pardo Leal, Jorge Eliécer Gaitán). Esta clasificación identifica 

barrios que, si bien no han experimentado transformaciones consolidadas, presentan 

condiciones socioeconómicas y dinámicas del mercado inmobiliario que los hacen 

susceptibles de gentrificación futura.  
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La inclusión de Villa Estrella en esta categoría es coherente con los hallazgos presentados 

en la Figura 7 donde este barrio registró uno de los mayores crecimientos porcentuales en 

precio del suelo por metro cuadrado durante el periodo 2005-2018. 

Tabla 6. Barrios clasificados como gentrificado por el modelo desarrollado. 

Barrio cluster_gentrificacion 

ALMIRANTE COLON Gentrificado 
BARRIO CHINO Gentrificado 
BOCAGRANDE Gentrificado 
BOSQUECITO Gentrificado 

CANAPOTE Gentrificado 
CASTILLOGRANDE Gentrificado 

CENTRO Gentrificado 
CRESPO Gentrificado 

DANIEL LEMAITRE Gentrificado 
EL CABRERO Gentrificado 
EL COUNTRY Gentrificado 

EL GALLO Gentrificado 
EL LAGUITO Gentrificado 

EL LIBERTADOR Gentrificado 
EL REPOSO Gentrificado 
GETSEMANI Gentrificado 

JOSE ANTONIO GALAN Gentrificado 
JUNIN Gentrificado 

LA MATUNA Gentrificado 
LA SIERRITA Gentrificado 

LOMA FRESCA Gentrificado 
LOS ANGELES Gentrificado 

LUIS CARLOS GALAN Gentrificado 
MARBELLA Gentrificado 

MARTINEZ MARTELO Gentrificado 
NUEVA DELHI Gentrificado 

NUEVA JERUSALEN Gentrificado 
NUEVO BOSQUE Gentrificado 

NUEVO PORVENIR Gentrificado 
PABLO VI - II Gentrificado 
PARAISO II Gentrificado 
SAN DIEGO Gentrificado 

SAN FRANCISCO Gentrificado 
SAN JOSE OBRERO Gentrificado 

SANTA MARIA Gentrificado 
SANTA MONICA Gentrificado 

SIETE DE AGOSTO Gentrificado 
VILLA RUBIA Gentrificado 

Fuente: Elaboración de los autores. 
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Estos barrios clasificados como gentrificados, detallados en la Tabla 6, incluyen sectores 
emblemáticos del centro histórico como Getsemaní, Centro y San Diego, así como zonas 
de la franja norte de la ciudad como Bocagrande, Castillogrande, El Laguito, Marbella y El 
Cabrero. La presencia de barrios como Chambacú en esta categoría resulta particularmente 
significativa, dado el dramático incremento del 24% en años promedio de escolaridad y la 
ocupación del 100% de viviendas registrada en 2018, indicadores que reflejan una 
transformación socioeconómica profunda del vecindario. 

Finalmente, 74 barrios (50.7% del total) fueron clasificados como no gentrificados, con 
probabilidades inferiores al 15%, indicando vecindarios que no presentan señales 
significativas de transformación urbana asociada a gentrificación en el periodo analizado. 
La distribución espacial de los resultados revela patrones geográficos consistentes con los 
hallazgos descriptivos presentados en la Figura 4, Figura 5, Figura 6 y Figura 7. Los 
barrios gentrificados se concentran en dos núcleos principales: el centro histórico y su área 
de influencia inmediata, y la zona norte costera de la ciudad. Este patrón espacial refleja 
las dinámicas diferenciadas de gentrificación documentadas en el marco teórico: 
turistificación y conversión de vivienda permanente en alojamientos de corta estancia en el 
centro histórico (fenómeno paradigmáticamente observado en Getsemaní), y procesos de 
super-gentrificación impulsados por inversión inmobiliaria de alto standing en la zona norte. 
Los barrios gentrificables, por su parte, muestran una distribución predominantemente 
periférica, con concentración en sectores tradicionalmente caracterizados por menores 
niveles socioeconómicos. La presencia de barrios como El Pozón en esta categoría sugiere 
que las presiones de mercado inmobiliario y las expectativas de revalorización están 
comenzando a alcanzar áreas históricamente relegadas del desarrollo urbano formal, 
potencialmente asociadas a proyectos de infraestructura vial, expansión urbana o 
especulación del suelo.  

Cabe destacar que la presencia de algunos barrios tanto en la franja de gentrificados como 

en la de gentrificables no implica necesariamente una transición urbana asociada a la 

turistificación. Esto se debe a que las variables utilizadas reflejan mejoras en la calidad de 

vida de los residentes y avances en infraestructura social, como la educación, por lo que 

pueden estar respondiendo a cambios sociodemográficos sin que ello conlleve, por 

ejemplo, un aumento en la renta corta tipo Airbnb. No obstante, es importante resaltar 

aquellos barrios con potencial de crecimiento económico que podrían estar experimentando 

efectos de desplazamiento o verse absorbidos por la nueva ola de gentrificación que 

atraviesa Cartagena. Este análisis y la estimación del modelo ofrecen pistas e hipótesis que 

permiten identificar los vecindarios que están experimentando transformaciones en su 

dinámica urbana. 
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CONCLUSIONES 

Este estudio ha propuesto un modelo de Random Forest para la identificación de barrios 

gentrificados y susceptibles a la gentrificación en la ciudad de Cartagena, Colombia, 

utilizando datos censales correspondientes a los años 2005 y 2018. La investigación 

representa una contribución metodológica significativa al campo de los estudios urbanos en 

el contexto latinoamericano, al aplicar técnicas de aprendizaje automático supervisado para 

el análisis de procesos de transformación urbana que tradicionalmente han sido abordados 

mediante enfoques predominantemente cualitativos. El modelo Random Forest 

desarrollado alcanzó un desempeño predictivo sobresaliente, con un accuracy del 91.4%, 

una precisión de 0.88, un recall de 0.8 y un F1-score de 0.842, métricas que demuestran la 

robustez y confiabilidad del enfoque metodológico para la identificación de procesos de 

gentrificación en Cartagena. De los 139 barrios analizados, el modelo clasificó 38 (26%) 

como gentrificados y 27 (18.5%) como gentrificables, evidenciando que aproximadamente 

el 44.5% de los vecindarios de la ciudad han experimentado o están en riesgo de 

experimentar transformaciones urbanas asociadas a procesos de revalorización 

inmobiliaria y cambio en la composición socioeconómica de sus residentes. La matriz de 

confusión revela que el modelo cometió solo 3 errores de clasificación en el conjunto de 

prueba, correspondiendo a una tasa de error del 8.6%, lo que confirma su capacidad para 

generalizar correctamente a datos no vistos durante el entrenamiento. Este nivel de 

precisión es comparable, e incluso superior, al reportado en estudios similares 

desarrollados en Washington D.C. (accuracy de 0.83), Londres (AUC-ROC de 0.747) y 

Sídney, posicionando al modelo como una herramienta confiable para la detección 

temprana de gentrificación en contextos urbanos latinoamericanos. 

Los resultados del análisis descriptivo de los patrones urbanos observados entre 2005 y 

2018 evidencian transformaciones significativas en la estructura socioeconómica y 

habitacional de Cartagena. Los barrios del centro histórico y la zona norte de la ciudad, 

particularmente Chambacú, El Cabrero, El Laguito, Bocagrande y Castillo Grande, 

presentaron los incrementos más pronunciados en indicadores asociados a procesos de 

gentrificación: aumento del nivel educativo promedio (con Chambacú registrando un 

incremento del 24%), elevación sustancial en el precio por metro cuadrado, y 

modificaciones en la proporción de viviendas ocupadas que sugieren procesos de 

turistificación y sustitución de vivienda permanente por usos temporales. Estos patrones 

son consistentes con la literatura sobre gentrificación transnacional en ciudades turísticas 

latinoamericanas, donde la competencia por el espacio urbano entre residentes originales 

y nuevos inversores inmobiliarios genera presiones de desplazamiento en poblaciones de 

bajos ingresos. 

El análisis de importancia de variables mediante el método de permutación revela que la 

proporción de viviendas ocupadas escalada constituye el predictor más influyente en el 

modelo Random Forest, seguida por el índice de envejecimiento escalado, el precio del 

suelo por metro cuadrado en el periodo 2018 y, en menor medida, la media de años de 

escolaridad. Este ordenamiento jerárquico de variables es coherente con los marcos 

teóricos de gentrificación que identifican tres dimensiones fundamentales del fenómeno: 

transformaciones en el mercado de vivienda (reflejadas en ocupación y precio), cambios 
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demográficos (capturados por el rejuvenecimiento poblacional), y mejoras en el capital 

humano de los residentes (evidenciadas en el nivel educativo). La preeminencia de la 

proporción de viviendas ocupadas como variable más importante sugiere que en el contexto 

cartagenero, las dinámicas de turistificación y conversión de vivienda permanente en 

alojamientos de corta estancia (fenómeno documentado paradigmáticamente en 

Getsemaní, donde la población residente se redujo de 10.500 en 2005 a 2.300 en 2018, y 

apenas 448 en 2025) constituyen un marcador particularmente sensible de gentrificación. 

Por su parte, el índice de envejecimiento emerge como predictor crítico debido a que el 

rejuvenecimiento demográfico representa un síntoma temprano y consistente de 

transformación barrial, mientras que el precio del suelo actúa como variable 

complementaria que confirma procesos ya iniciados más que como indicador anticipatorio. 

La adaptación metodológica realizada para el contexto de Cartagena, que incorpora el 

índice de envejecimiento en sustitución de variables sobre ingresos de hogares (no 

disponibles en el censo colombiano), demuestra la viabilidad de aplicar modelos predictivos 

de gentrificación en contextos donde la disponibilidad de datos es limitada. La construcción 

de la variable dependiente mediante cinco criterios socioeconómicos (variación de 

viviendas, viviendas ocupadas, años de escolaridad, precio del suelo, e índice de 

envejecimiento) permite capturar de forma multidimensional los procesos de cambio 

urbano, superando las limitaciones de aproximaciones unidimensionales que se basan 

exclusivamente en indicadores de ingreso o precio de vivienda. La capacidad predictiva del 

modelo Random Forest se extiende más allá de la clasificación retrospectiva del periodo 

2005-2018, ofreciendo potencial para la extrapolación temporal y espacial de procesos de 

gentrificación en Cartagena. La arquitectura del modelo, con 230 árboles de decisión y 

hiperparámetros optimizados mediante RandomizedSearchCV (max_depth=6, 

min_samples_split=9, min_samples_leaf=4), configura un equilibrio óptimo entre capacidad 

de aprendizaje y prevención de sobreajuste, permitiendo que el modelo capture patrones 

generalizables. En términos de extrapolación temporal, el modelo puede actualizarse con 

datos censales del próximo ciclo (proyectado para 2025-2026) para generar predicciones 

sobre el estado de gentrificación hacia 2030, permitiendo identificar barrios que transitarán 

de la categoría 'gentrificable' a 'gentrificado', así como detectar nuevos vecindarios en 

riesgo. Desde una perspectiva espacial, el modelo entrenado en Cartagena podría 

adaptarse mediante transfer learning a otras ciudades costeras colombianas con dinámicas 

turísticas similares (Santa Marta, Barranquilla) o ciudades intermedias latinoamericanas 

que experimentan presiones inmobiliarias análogas. No obstante, el modelo asume que las 

relaciones entre variables predictoras y gentrificación observadas en 2005-2018 se 

mantendrán estables, supuesto que puede violarse ante cambios drásticos en política 

urbana o shocks económicos, recomendándose implementar un sistema de monitoreo 

continuo que recalibre el modelo periódicamente. 

El uso de algoritmos de aprendizaje automático, particularmente Random Forest, presenta 

ventajas metodológicas sustanciales para el estudio de la gentrificación urbana. La 

capacidad del modelo para manejar relaciones no lineales complejas entre variables, 

identificar interacciones entre factores socioeconómicos sin especificación previa, y 

proporcionar medidas de importancia de variables, permite una comprensión más profunda 

de los mecanismos subyacentes a los procesos de transformación urbana. Además, la 
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posibilidad de realizar predicciones sobre barrios susceptibles a la gentrificación 

(nowcasting) representa una herramienta valiosa para la planificación urbana preventiva, 

permitiendo a los responsables de política pública anticipar procesos de desplazamiento 

antes de que se consoliden. 

No obstante, es importante reconocer las limitaciones del presente estudio. En primer lugar, 

la disponibilidad limitada de datos censales en Colombia (con actualizaciones al menos 

cada 10 años, aunque con periodos de tiempo irregulares) restringe la capacidad de 

capturar dinámicas de cambio urbano de corto y mediano plazo, particularmente relevantes 

en el contexto de la rápida turistificación experimentada por Cartagena en la última década. 

En segundo lugar, la ausencia de información sobre ingresos de los hogares, composición 

étnico-racial de los barrios, y patrones de tenencia de vivienda (propiedad vs. 

arrendamiento) limita la capacidad del modelo para capturar dimensiones importantes del 

proceso de gentrificación documentadas en la literatura internacional. En tercer lugar, el 

estudio se centra exclusivamente en variables socioeconómicas y habitacionales, sin 

incorporar explícitamente dimensiones espaciales como proximidad a amenidades 

urbanas, accesibilidad al transporte público, o transformaciones en el uso del suelo, que la 

literatura ha identificado como factores relevantes en procesos de gentrificación. 

Si bien el modelo Random Forest demuestra un desempeño robusto, es importante 

reconocer limitaciones metodológicas específicas. En primer lugar, el tamaño relativamente 

pequeño de la muestra (139 barrios, de los cuales 35 se utilizaron para testeo) introduce 

incertidumbre en las estimaciones de desempeño, especialmente para la clase minoritaria 

(barrios gentrificados). Técnicas de aumento de datos mediante simulación de vecindarios 

sintéticos o incorporación de datos de ciudades comparables podrían robustecer las 

estimaciones. En segundo lugar, aunque la validación cruzada con 5 folds mitiga riesgos de 

sobreajuste, el modelo no captura heterogeneidad en tipos de gentrificación: no distingue 

entre gentrificación residencial tradicional, super-gentrificación en barrios ya acomodados, 

turistificación, y 'new-build gentrification' asociada a grandes proyectos inmobiliarios. En 

tercer lugar, la ausencia de variables espaciales explícitas (proximidad a amenidades, 

accesibilidad a transporte, distancia al CBD) que la literatura identifica como predictores 

importantes podría limitar la capacidad explicativa del modelo. La incorporación de estas 

variables mediante análisis de redes o modelos espacialmente explícitos (spatial lag, spatial 

error) podría incrementar tanto la precisión predictiva como la interpretabilidad. Finalmente, 

el modelo no incorpora información temporal de alta frecuencia sobre transacciones 

inmobiliarias, licencias turísticas o datos de plataformas como Airbnb, que podrían detectar 

señales tempranas de transformación antes de que sean capturadas en censos decenales. 
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RECOMENDACIONES 

Los hallazgos de esta investigación tienen implicaciones significativas para la formulación 

de políticas urbanas en Cartagena y otras ciudades intermedias latinoamericanas que 

experimentan procesos similares de turistificación y revalorización inmobiliaria. Se 

recomienda a los responsables de política pública considerar las siguientes acciones: 

• Implementar sistemas de monitoreo continuo de los indicadores socioeconómicos y 

habitacionales identificados en este estudio como predictores de gentrificación, con el 

fin de desarrollar capacidades de detección temprana de procesos de transformación 

urbana que puedan derivar en desplazamiento de poblaciones vulnerables. 

• Diseñar e implementar instrumentos de regulación del mercado inmobiliario y turístico 

que permitan equilibrar los objetivos de desarrollo económico con la protección del 

derecho a la vivienda de los residentes originales, incluyendo mecanismos de control 

de alquileres, restricciones al uso de vivienda para fines turísticos de corta estancia, e 

incentivos para la producción y preservación de vivienda asequible en barrios en 

proceso de revalorización. 

• Desarrollar estrategias de renovación urbana que no impliquen desplazamiento social, 

incorporando a las comunidades residentes en los procesos de toma de decisiones 

sobre intervenciones urbanas y garantizando su permanencia mediante políticas de 

vivienda social, mejoramiento barrial participativo, y fortalecimiento del tejido 

organizativo local. 

• Fortalecer los sistemas de información urbana y estadística oficial, incorporando 

variables adicionales en los censos de población y vivienda que permitan caracterizar 

de forma más completa los procesos de cambio urbano, incluyendo información sobre 

ingresos de los hogares, composición étnico-racial, patrones de tenencia, y movilidad 

residencial. 

• Promover investigaciones interdisciplinarias que complementen los enfoques 

cuantitativos con metodologías cualitativas, permitiendo una comprensión más profunda 

de las experiencias vividas por las comunidades afectadas por procesos de 

gentrificación y las estrategias de resistencia desarrolladas por los residentes originales. 

Los resultados del modelo permiten formular recomendaciones diferenciadas según el nivel 

de riesgo de gentrificación identificado. Para los 27 barrios clasificados como gentrificables 

(El Pozón, Villa Estrella, Alameda la Victoria, sectores de Olaya Herrera, entre otros), se 

recomienda implementar estrategias de intervención preventiva que incluyan: (1) 

establecimiento de zonas de preservación residencial con restricciones al uso turístico 

comercial; (2) creación de fondos de adquisición de suelo para bancos de tierra pública que 

permitan al Estado anticiparse a la especulación; (3) implementación de mecanismos de 

'community land trusts' que transfieran propiedad colectiva a organizaciones barriales; y (4) 

fortalecimiento del tejido organizativo local mediante apoyo a juntas de acción comunal y 

asociaciones de vecinos. Para los 38 barrios ya gentrificados (Getsemaní, Centro, San 

Diego, Bocagrande, Castillogrande, El Laguito, Chambacú, entre otros), donde procesos de 

desplazamiento están consolidados, se recomiendan políticas de mitigación que incluyan: 
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(1) regulación estricta de plataformas de alquiler de corta estancia mediante cuotas 

máximas de licencias turísticas por barrio; (2) implementación de control de alquileres (rent 

control) especialmente en el centro histórico; (3) creación de programas de 'derecho al 

retorno' para familias desplazadas; (4) desarrollo de políticas de vivienda inclusiva 

(inclusionary zoning) que exijan destinar 20-30% de nuevas unidades a vivienda asequible; 

y (5) implementación de impuestos redistributivos sobre valorización del suelo. 

Transversalmente, se recomienda establecer un observatorio urbano permanente que 

utilice el modelo Random Forest como herramienta de nowcasting para monitorear 

trimestralmente indicadores clave y actualizar clasificaciones de riesgo. 

Futuras investigaciones deberían explorar la incorporación de fuentes de datos no 

tradicionales, como información de plataformas de alquiler de corta estancia (Airbnb), 

transacciones inmobiliarias de alta frecuencia, imágenes satelitales para detectar cambios 

en el entorno construido, y datos de redes sociales que permitan capturar percepciones y 

narrativas sobre los procesos de transformación urbana. Asimismo, resulta pertinente 

evaluar la aplicabilidad del modelo propuesto en otras ciudades colombianas y 

latinoamericanas que experimentan procesos similares de turistificación y presión 

inmobiliaria, con el fin de validar su capacidad de generalización y adaptabilidad a distintos 

contextos urbanos. 
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